|
|
|
|
|
|
|
|
|
|
|
#include <algorithm> |
|
#include <array> |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <limits> |
|
#include <memory> |
|
#include <random> |
|
#include <vector> |
|
|
|
#include <gtest/gtest.h> |
|
|
|
#include <xnnpack.h> |
|
#include <xnnpack/node-type.h> |
|
#include <xnnpack/operator-utils.h> |
|
#include <xnnpack/operator.h> |
|
#include <xnnpack/subgraph.h> |
|
|
|
class AveragePoolingTestF32 : public ::testing::Test { |
|
protected: |
|
AveragePoolingTestF32() |
|
{ |
|
random_device = std::make_unique<std::random_device>(); |
|
rng = std::mt19937((*random_device)()); |
|
input_size_dist = std::uniform_int_distribution<uint32_t>(10, 15); |
|
pooling_size_dist = std::uniform_int_distribution<uint32_t>(2, 5); |
|
stride_dist = std::uniform_int_distribution<uint32_t>(1, 2); |
|
batch_size = input_size_dist(rng); |
|
input_height = input_size_dist(rng); |
|
input_width = input_size_dist(rng); |
|
channels = input_size_dist(rng); |
|
pooling_height = pooling_size_dist(rng); |
|
pooling_width = pooling_size_dist(rng); |
|
|
|
input_padding_top = std::uniform_int_distribution<uint32_t>(0, pooling_height - 1)(rng); |
|
input_padding_right = std::uniform_int_distribution<uint32_t>(0, pooling_width - 1)(rng); |
|
input_padding_bottom = std::uniform_int_distribution<uint32_t>(0, pooling_height - 1)(rng); |
|
input_padding_left = std::uniform_int_distribution<uint32_t>(0, pooling_width - 1)(rng); |
|
stride_height = stride_dist(rng); |
|
stride_width = stride_dist(rng); |
|
output_height = xnn_compute_convolution_output_dimension( |
|
input_padding_top + input_height + input_padding_bottom, pooling_height, 1, stride_height); |
|
output_width = xnn_compute_convolution_output_dimension( |
|
input_padding_left + input_width + input_padding_right, pooling_width, 1, stride_width); |
|
output_min = std::uniform_real_distribution<float>(-255.0f, 0.0f)(rng); |
|
output_max = std::uniform_real_distribution<float>(0.1f, 255.0f)(rng); |
|
input_dims = {batch_size, input_height, input_width, channels}; |
|
output_dims = {batch_size, output_height, output_width, channels}; |
|
input = std::vector<float>(XNN_EXTRA_BYTES / sizeof(float) + batch_size * input_height * input_width * channels); |
|
operator_output = std::vector<float>(batch_size * output_height * output_width * channels); |
|
subgraph_output = std::vector<float>(batch_size * output_height * output_width * channels); |
|
} |
|
|
|
std::unique_ptr<std::random_device> random_device; |
|
std::mt19937 rng; |
|
std::uniform_int_distribution<uint32_t> input_size_dist; |
|
std::uniform_int_distribution<uint32_t> pooling_size_dist; |
|
std::uniform_int_distribution<uint32_t> stride_dist; |
|
uint32_t batch_size; |
|
uint32_t input_height; |
|
uint32_t input_width; |
|
uint32_t channels; |
|
uint32_t pooling_height; |
|
uint32_t pooling_width; |
|
uint32_t output_height; |
|
uint32_t output_width; |
|
uint32_t stride_height; |
|
uint32_t stride_width; |
|
std::array<size_t, 4> input_dims; |
|
std::array<size_t, 4> output_dims; |
|
uint32_t input_padding_top; |
|
uint32_t input_padding_right; |
|
uint32_t input_padding_bottom; |
|
uint32_t input_padding_left; |
|
float output_min; |
|
float output_max; |
|
|
|
uint32_t input_id; |
|
uint32_t output_id; |
|
|
|
std::vector<float> input; |
|
std::vector<float> operator_output; |
|
std::vector<float> subgraph_output; |
|
}; |
|
|
|
TEST_F(AveragePoolingTestF32, define) |
|
{ |
|
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr)); |
|
|
|
xnn_subgraph_t subgraph = nullptr; |
|
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, 0, &subgraph)); |
|
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
|
|
|
input_id = XNN_INVALID_NODE_ID; |
|
ASSERT_EQ( |
|
xnn_status_success, xnn_define_tensor_value( |
|
subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 0, |
|
XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
|
ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
|
|
|
output_id = XNN_INVALID_NODE_ID; |
|
ASSERT_EQ( |
|
xnn_status_success, xnn_define_tensor_value( |
|
subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, 1, |
|
XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
|
ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
|
|
|
ASSERT_EQ( |
|
xnn_status_success, |
|
xnn_define_average_pooling_2d( |
|
subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, pooling_height, |
|
pooling_width, stride_height, stride_width, output_min, output_max, input_id, output_id, |
|
0)); |
|
|
|
ASSERT_EQ(subgraph->num_nodes, 1); |
|
const struct xnn_node* node = &subgraph->nodes[0]; |
|
ASSERT_EQ(node->type, xnn_node_type_average_pooling_2d); |
|
ASSERT_EQ(node->compute_type, xnn_compute_type_fp32); |
|
|
|
ASSERT_EQ(node->params.pooling_2d.padding_top, input_padding_top); |
|
ASSERT_EQ(node->params.pooling_2d.padding_right, input_padding_right); |
|
ASSERT_EQ(node->params.pooling_2d.padding_bottom, input_padding_bottom); |
|
ASSERT_EQ(node->params.pooling_2d.padding_left, input_padding_left); |
|
ASSERT_EQ(node->params.pooling_2d.pooling_height, pooling_height); |
|
ASSERT_EQ(node->params.pooling_2d.pooling_width, pooling_width); |
|
ASSERT_EQ(node->params.pooling_2d.stride_height, stride_height); |
|
ASSERT_EQ(node->params.pooling_2d.stride_width, stride_width); |
|
ASSERT_EQ(node->activation.output_min, output_min); |
|
ASSERT_EQ(node->activation.output_max, output_max); |
|
ASSERT_EQ(node->num_inputs, 1); |
|
ASSERT_EQ(node->inputs[0], input_id); |
|
ASSERT_EQ(node->num_outputs, 1); |
|
ASSERT_EQ(node->outputs[0], output_id); |
|
ASSERT_EQ(node->flags, 0); |
|
} |
|
|
|
TEST_F(AveragePoolingTestF32, matches_operator_api) |
|
{ |
|
std::uniform_real_distribution<float> f32dist; |
|
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
|
std::fill(operator_output.begin(), operator_output.end(), nanf("")); |
|
std::fill(subgraph_output.begin(), subgraph_output.end(), nanf("")); |
|
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr)); |
|
|
|
|
|
xnn_operator_t op = nullptr; |
|
const xnn_status status = xnn_create_average_pooling2d_nhwc_f32( |
|
input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, pooling_height, pooling_width, |
|
stride_height, stride_width, channels, channels, channels, output_min, output_max, 0, &op); |
|
if (status == xnn_status_unsupported_hardware) { |
|
GTEST_SKIP(); |
|
} |
|
|
|
ASSERT_EQ(xnn_status_success, status); |
|
ASSERT_NE(nullptr, op); |
|
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_op(op, xnn_delete_operator); |
|
|
|
ASSERT_EQ( |
|
xnn_status_success, |
|
xnn_reshape_average_pooling2d_nhwc_f32( |
|
op, batch_size, input_height, input_width, nullptr, nullptr, |
|
nullptr)); |
|
ASSERT_EQ(xnn_status_success, xnn_setup_average_pooling2d_nhwc_f32(op, input.data(), operator_output.data())); |
|
|
|
ASSERT_EQ(xnn_status_success, xnn_run_operator(op, nullptr)); |
|
|
|
|
|
xnn_subgraph_t subgraph = nullptr; |
|
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, 0, &subgraph)); |
|
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); |
|
input_id = XNN_INVALID_NODE_ID; |
|
ASSERT_EQ( |
|
xnn_status_success, xnn_define_tensor_value( |
|
subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, 0, |
|
XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); |
|
ASSERT_NE(input_id, XNN_INVALID_NODE_ID); |
|
|
|
output_id = XNN_INVALID_NODE_ID; |
|
ASSERT_EQ( |
|
xnn_status_success, |
|
xnn_define_tensor_value( |
|
subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, 1, |
|
XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); |
|
ASSERT_NE(output_id, XNN_INVALID_NODE_ID); |
|
|
|
xnn_runtime_t runtime = nullptr; |
|
ASSERT_EQ( |
|
xnn_status_success, |
|
xnn_define_average_pooling_2d( |
|
subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, pooling_height, |
|
pooling_width, stride_height, stride_width, output_min, output_max, input_id, output_id, |
|
0)); |
|
ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, 0, &runtime)); |
|
ASSERT_NE(nullptr, runtime); |
|
std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); |
|
std::array<xnn_external_value, 2> external = { |
|
xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; |
|
ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); |
|
ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); |
|
|
|
ASSERT_EQ(subgraph_output, operator_output); |
|
} |
|
|