|
|
|
|
|
|
|
|
|
|
|
$assert (P, H) == (19, 9) |
|
$assert FMA in [0, 3] |
|
$assert BATCH_TILE % 8 == 0 |
|
$assert BATCH_TILE >= 8 |
|
$SIMD_TILE = BATCH_TILE |
|
#include <assert.h> |
|
#include <stddef.h> |
|
#include <math.h> |
|
|
|
#include <immintrin.h> |
|
|
|
#include <immintrin.h> |
|
|
|
#include <xnnpack/common.h> |
|
#include <xnnpack/intrinsics-polyfill.h> |
|
#include <xnnpack/microparams.h> |
|
#include <xnnpack/vunary.h> |
|
|
|
|
|
$POLY_SUFFIX = "p%dh%dt2" % (P, H) |
|
$PARAMS_STRUCT = "avx_polynomial_" + POLY_SUFFIX |
|
$ISA = "fma3" if FMA else "f16c" |
|
void xnn_f16_vtanh_ukernel__${ISA}_polynomial_${POLY_SUFFIX}_x${BATCH_TILE}( |
|
size_t batch, |
|
const void* input, |
|
void* output, |
|
const union xnn_f16_tanh_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
|
{ |
|
assert(batch != 0); |
|
assert(batch % sizeof(uint16_t) == 0); |
|
assert(input != NULL); |
|
assert(output != NULL); |
|
|
|
|
|
const __m256 vneg_sat_cutoff = _mm256_load_ps(params->${PARAMS_STRUCT}.neg_sat_cutoff); |
|
const __m256 vpos_sat_cutoff = _mm256_load_ps(params->${PARAMS_STRUCT}.pos_sat_cutoff); |
|
$for i in reversed(range(3, P+1, 2)): |
|
const __m256 vc${i} = _mm256_load_ps(params->${PARAMS_STRUCT}.c${i}); |
|
|
|
const uint16_t* i = (const uint16_t*) input; |
|
uint16_t* o = (uint16_t*) output; |
|
$if BATCH_TILE > 8: |
|
for (; batch >= ${BATCH_TILE} * sizeof(uint16_t); batch -= ${BATCH_TILE} * sizeof(uint16_t)) { |
|
__m256 vx0 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
|
$for N in range(1, SIMD_TILE): |
|
__m256 vx${N} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + ${N * 8}))); |
|
i += ${BATCH_TILE}; |
|
|
|
$for N in range(SIMD_TILE): |
|
vx${N} = _mm256_max_ps(vneg_sat_cutoff, vx${N}); |
|
$for N in range(SIMD_TILE): |
|
vx${N} = _mm256_min_ps(vpos_sat_cutoff, vx${N}); |
|
|
|
$for N in range(SIMD_TILE): |
|
const __m256 vt${N} = _mm256_mul_ps(vx${N}, vx${N}); |
|
|
|
$if FMA == 3: |
|
$for N in range(SIMD_TILE): |
|
__m256 vp${N} = vc${P}; |
|
$for i in reversed(range(3, P, 2)): |
|
$for N in range(SIMD_TILE): |
|
vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc${i}); |
|
$else: |
|
$for N in range(SIMD_TILE): |
|
__m256 vp${N} = _mm256_add_ps(_mm256_mul_ps(vc${P}, vt${N}), vc${P-2}); |
|
$for i in reversed(range(3, P-2, 2)): |
|
$for N in range(SIMD_TILE): |
|
vp${N} = _mm256_add_ps(_mm256_mul_ps(vp${N}, vt${N}), vc${i}); |
|
|
|
$for N in range(SIMD_TILE): |
|
const __m256 vxt${N} = _mm256_mul_ps(vx${N}, vt${N}); |
|
$for N in range(SIMD_TILE): |
|
$if FMA == 3: |
|
const __m256 vy${N} = _mm256_fmadd_ps(vp${N}, vxt${N}, vx${N}); |
|
$else: |
|
const __m256 vy${N} = _mm256_add_ps(_mm256_mul_ps(vp${N}, vxt${N}), vx${N}); |
|
|
|
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy0, _MM_FROUND_TO_NEAREST_INT)); |
|
$for N in range(1, SIMD_TILE): |
|
_mm_storeu_si128((__m128i*) (o + ${N * 8}), _mm256_cvtps_ph(vy${N}, _MM_FROUND_TO_NEAREST_INT)); |
|
o += ${BATCH_TILE}; |
|
} |
|
for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) { |
|
__m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
|
i += 8; |
|
|
|
vx = _mm256_max_ps(vneg_sat_cutoff, vx); |
|
vx = _mm256_min_ps(vpos_sat_cutoff, vx); |
|
|
|
const __m256 vt = _mm256_mul_ps(vx, vx); |
|
|
|
$if FMA == 3: |
|
__m256 vp = vc${P}; |
|
$for i in reversed(range(3, P, 2)): |
|
vp = _mm256_fmadd_ps(vp, vt, vc${i}); |
|
$else: |
|
__m256 vp = _mm256_add_ps(_mm256_mul_ps(vc${P}, vt), vc${P-2}); |
|
$for i in reversed(range(3, P-2, 2)): |
|
vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc${i}); |
|
|
|
const __m256 vxt = _mm256_mul_ps(vx, vt); |
|
$if FMA == 3: |
|
const __m256 vy = _mm256_fmadd_ps(vp, vxt, vx); |
|
$else: |
|
const __m256 vy = _mm256_add_ps(_mm256_mul_ps(vp, vxt), vx); |
|
|
|
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy, _MM_FROUND_TO_NEAREST_INT)); |
|
o += 8; |
|
} |
|
if (batch != 0) { |
|
__m256 vx = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) i)); |
|
|
|
vx = _mm256_max_ps(vneg_sat_cutoff, vx); |
|
vx = _mm256_min_ps(vpos_sat_cutoff, vx); |
|
|
|
const __m256 vt = _mm256_mul_ps(vx, vx); |
|
|
|
$if FMA == 3: |
|
__m256 vp = vc${P}; |
|
$for i in reversed(range(3, P, 2)): |
|
vp = _mm256_fmadd_ps(vp, vt, vc${i}); |
|
$else: |
|
__m256 vp = _mm256_add_ps(_mm256_mul_ps(vc${P}, vt), vc${P-2}); |
|
$for i in reversed(range(3, P-2, 2)): |
|
vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc${i}); |
|
|
|
const __m256 vxt = _mm256_mul_ps(vx, vt); |
|
$if FMA == 3: |
|
const __m256 vy = _mm256_fmadd_ps(vp, vxt, vx); |
|
$else: |
|
const __m256 vy = _mm256_add_ps(_mm256_mul_ps(vp, vxt), vx); |
|
|
|
__m128i vh = _mm256_cvtps_ph(vy, _MM_FROUND_TO_NEAREST_INT); |
|
|
|
if (batch & (4 * sizeof(uint16_t))) { |
|
_mm_storel_epi64((__m128i*) o, vh); |
|
vh = _mm_unpackhi_epi64(vh, vh); |
|
o += 4; |
|
} |
|
if (batch & (2 * sizeof(uint16_t))) { |
|
_mm_storeu_si32(o, vh); |
|
vh = _mm_srli_epi64(vh, 32); |
|
o += 2; |
|
} |
|
if (batch & (1 * sizeof(uint16_t))) { |
|
*o = (uint16_t) _mm_extract_epi16(vh, 0); |
|
} |
|
} |
|
} |
|
|