|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <assert.h> |
|
|
|
#include <immintrin.h> |
|
|
|
#include <xnnpack/intrinsics-polyfill.h> |
|
#include <xnnpack/math.h> |
|
#include <xnnpack/vmulcaddc.h> |
|
|
|
|
|
void xnn_f16_vmulcaddc_minmax_ukernel_c8__fma3_2x( |
|
size_t rows, |
|
size_t channels, |
|
const void* restrict input, |
|
size_t input_stride, |
|
const void* restrict weights, |
|
void* restrict output, |
|
size_t output_stride, |
|
const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
|
{ |
|
assert(rows != 0); |
|
assert(channels != 0); |
|
assert(channels % sizeof(uint16_t) == 0); |
|
|
|
const uint16_t* i0 = (const uint16_t*) input; |
|
uint16_t* o0 = (uint16_t*) output; |
|
const uint16_t* i1 = (const uint16_t*) ((uintptr_t) i0 + input_stride); |
|
uint16_t* o1 = (uint16_t*) ((uintptr_t) o0 + output_stride); |
|
|
|
const size_t input_increment = input_stride * 2 - channels; |
|
const size_t output_increment = output_stride * 2 - channels; |
|
|
|
const __m256 vmin = _mm256_load_ps(params->avx.min); |
|
const __m256 vmax = _mm256_load_ps(params->avx.max); |
|
do { |
|
if XNN_UNPREDICTABLE(rows < 2) { |
|
i1 = i0; |
|
o1 = o0; |
|
} |
|
|
|
const uint16_t* w = (const uint16_t*) weights; |
|
size_t c = channels; |
|
for (; c >= 8 * sizeof(uint16_t); c -= 8 * sizeof(uint16_t)) { |
|
const __m256 vscale = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) w)); |
|
|
|
__m256 vacc0 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0)); |
|
i0 += 8; |
|
__m256 vacc1 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i1)); |
|
i1 += 8; |
|
|
|
const __m256 vbias = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 8))); |
|
w += 16; |
|
|
|
vacc0 = _mm256_fmadd_ps(vacc0, vscale, vbias); |
|
vacc1 = _mm256_fmadd_ps(vacc1, vscale, vbias); |
|
|
|
vacc0 = _mm256_max_ps(vacc0, vmin); |
|
vacc1 = _mm256_max_ps(vacc1, vmin); |
|
|
|
vacc0 = _mm256_min_ps(vacc0, vmax); |
|
vacc1 = _mm256_min_ps(vacc1, vmax); |
|
|
|
_mm_storeu_si128((__m128i*) o0, _mm256_cvtps_ph(vacc0, _MM_FROUND_TO_NEAREST_INT)); |
|
o0 += 8; |
|
_mm_storeu_si128((__m128i*) o1, _mm256_cvtps_ph(vacc1, _MM_FROUND_TO_NEAREST_INT)); |
|
o1 += 8; |
|
} |
|
if XNN_UNLIKELY(c != 0) { |
|
const __m256 vscale = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) w)); |
|
|
|
__m256 vacc0 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0)); |
|
i0 = (const uint16_t*) ((uintptr_t) i0 + c); |
|
__m256 vacc1 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i1)); |
|
i1 = (const uint16_t*) ((uintptr_t) i1 + c); |
|
|
|
const __m256 vbias = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + 8))); |
|
|
|
vacc0 = _mm256_fmadd_ps(vacc0, vscale, vbias); |
|
vacc1 = _mm256_fmadd_ps(vacc1, vscale, vbias); |
|
|
|
vacc0 = _mm256_max_ps(vacc0, vmin); |
|
vacc1 = _mm256_max_ps(vacc1, vmin); |
|
|
|
vacc0 = _mm256_min_ps(vacc0, vmax); |
|
vacc1 = _mm256_min_ps(vacc1, vmax); |
|
|
|
__m128i vh0 = _mm256_cvtps_ph(vacc0, _MM_FROUND_TO_NEAREST_INT); |
|
__m128i vh1 = _mm256_cvtps_ph(vacc1, _MM_FROUND_TO_NEAREST_INT); |
|
|
|
if (c & (4 * sizeof(uint16_t))) { |
|
_mm_storel_epi64((__m128i*) o0, vh0); |
|
_mm_storel_epi64((__m128i*) o1, vh1); |
|
|
|
vh0 = _mm_unpackhi_epi64(vh0, vh0); |
|
vh1 = _mm_unpackhi_epi64(vh1, vh1); |
|
|
|
o0 += 4; |
|
o1 += 4; |
|
} |
|
if (c & (2 * sizeof(uint16_t))) { |
|
_mm_storeu_si32(o0, vh0); |
|
_mm_storeu_si32(o1, vh1); |
|
|
|
vh0 = _mm_srli_epi64(vh0, 32); |
|
vh1 = _mm_srli_epi64(vh1, 32); |
|
|
|
o0 += 2; |
|
o1 += 2; |
|
} |
|
if (c & (1 * sizeof(uint16_t))) { |
|
*o0 = (uint16_t) _mm_extract_epi16(vh0, 0); |
|
*o1 = (uint16_t) _mm_extract_epi16(vh1, 0); |
|
|
|
o0 += 1; |
|
o1 += 1; |
|
} |
|
} |
|
i0 = (const uint16_t*) ((uintptr_t) i0 + input_increment); |
|
o0 = (uint16_t*) ((uintptr_t) o0 + output_increment); |
|
i1 = (const uint16_t*) ((uintptr_t) i1 + input_increment); |
|
o1 = (uint16_t*) ((uintptr_t) o1 + output_increment); |
|
rows = doz(rows, 2); |
|
} while (rows != 0); |
|
} |
|
|