File size: 13,661 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// Copyright 2023 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

#include <algorithm>
#include <cfloat>
#include <cmath>
#include <functional>
#include <memory>
#include <numeric>
#include <random>
#include <vector>

#include <pthreadpool.h>

#include <benchmark/benchmark.h>
#include <fp16/fp16.h>

#include "bench/utils.h"
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/math-stubs.h>


constexpr uint16_t kNumSubnormalValues = 1024;

struct ComputeErrorContext {
  const uint16_t* input;
  const uint16_t* output;
  float* error;
  uint16_t num_flush_to_zero_values;
};

static void ComputeError(
  struct ComputeErrorContext* context,
  size_t start,
  size_t range)
{
  const uint16_t* input = context->input;
  const uint16_t* output = context->output;
  float* error = context->error;
  for (size_t i = start; i < start + range; i++) {
    uint16_t input_val = input[i];
    uint16_t output_val = output[i];
#if XNN_ARCH_ARM || XNN_ARCH_ARM64 || XNN_ARCH_X86 || XNN_ARCH_X86_64
    const uint16_t num_flush_to_zero_values = context->num_flush_to_zero_values;
    const uint16_t abs_input_val = input_val & UINT16_C(0x7FFF);
    if (abs_input_val < std::min<uint16_t>(num_flush_to_zero_values, kNumSubnormalValues)) {
      // Replace subnormal inputs with signed zeroes
      input_val = input_val & UINT16_C(0x8000);
    } else if (abs_input_val < num_flush_to_zero_values) {
      // For the smallest normalized floating-point numbers the implementation is likely to produce 0
      // instead of the correct result (same as input) due to denormals in intermediate computations.
      const uint16_t abs_output_val = output_val & UINT16_C(0x7FFF);
      if (abs_output_val == 0) {
        output_val = input_val;
      }
    }
#endif  // XNN_ARCH_ARM || XNN_ARCH_ARM64 || XNN_ARCH_X86 || XNN_ARCH_X86_64

    const float output_ref = std::tanh(fp16_ieee_to_fp32_value(input_val));
    const float abs_error = std::abs(output_ref - fp16_ieee_to_fp32_value(output_val));
    const uint16_t output_abs = fp16_ieee_from_fp32_value(std::abs(output_ref));
    const float output_ulp = fp16_ieee_to_fp32_value(output_abs + 1) - fp16_ieee_to_fp32_value(output_abs);
    error[i] = float(abs_error / output_ulp);
  }
}

static void TanhError(
  benchmark::State& state,
  xnn_f16_unary_math_fn tanh,
  uint16_t num_flush_to_zero_values,
  benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
  if (isa_check != nullptr && !isa_check(state)) {
    return;
  }

  // The smallest x for which tanhh(x) is not -1.0h (-0x1.204p+2h).
  const uint16_t min_input = UINT16_C(0xC481);
  // The largest x for which tanhh(x) is not 1.0h (0x1.204p+2h).
  const uint16_t max_input = UINT16_C(0x4481);

  // Number of elements in one block of inputs/outputs.
  // Combining multiple elements in a block reduce function call overhead.
  const size_t block_size = 16384;
  // Number of elements in one parallelization tile. Worker threads process this many elements in each task.
  const size_t tile_size = 64;

  std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> x(block_size);
  std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> y(block_size);
  std::vector<float> ulp_error(block_size);
  float max_ulp_error = 0.0f;

  ComputeErrorContext context;
  context.input = x.data();
  context.output = y.data();
  context.error = ulp_error.data();
  context.num_flush_to_zero_values = num_flush_to_zero_values;
  for (auto _ : state) {
    for (uint16_t n = min_input; int16_t(n) < 0; n -= block_size) {
      for (uint16_t i = 0; i < block_size; i++) {
        x[i] = std::max<uint16_t>(n - i, UINT16_C(0x8000));
      }
      std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);

      pthreadpool_parallelize_1d_tile_1d(
        nullptr,
        [&](size_t offset, size_t size) {
          tanh(size * sizeof(uint16_t), x.data() + offset, y.data() + offset);
        },
        block_size, tile_size, /*flags=*/PTHREADPOOL_FLAG_DISABLE_DENORMALS);

      pthreadpool_parallelize_1d_tile_1d(
          /*threadpool=*/nullptr,
          reinterpret_cast<pthreadpool_task_1d_tile_1d_t>(ComputeError),
          static_cast<void*>(&context),
          block_size, tile_size, /*flags=*/0);

      max_ulp_error = std::accumulate(ulp_error.cbegin(), ulp_error.cend(), max_ulp_error,
        static_cast<const float& (*)(const float&, const float&)>(std::max<float>));
    }
    for (uint16_t n = 0; n < max_input; n += block_size) {
      for (uint16_t i = 0; i < block_size; i++) {
        x[i] = std::min<uint16_t>(n + i, max_input);
      }
      std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);

      pthreadpool_parallelize_1d_tile_1d(
        nullptr,
        [&](size_t offset, size_t size) {
          tanh(size * sizeof(uint16_t), x.data() + offset, y.data() + offset);
        },
        block_size, tile_size, /*flags=*/PTHREADPOOL_FLAG_DISABLE_DENORMALS);

      pthreadpool_parallelize_1d_tile_1d(
          /*threadpool=*/nullptr,
          reinterpret_cast<pthreadpool_task_1d_tile_1d_t>(ComputeError),
          static_cast<void*>(&context),
          block_size, tile_size, /*flags=*/0);

      max_ulp_error = std::accumulate(ulp_error.cbegin(), ulp_error.cend(), max_ulp_error,
        static_cast<const float& (*)(const float&, const float&)>(std::max<float>));
    }
  }

  state.counters["ULPERROR"] = benchmark::Counter(max_ulp_error);
}

#if XNN_ENABLE_ARM_FP16_VECTOR && XNN_ARCH_ARM64
  BENCHMARK_CAPTURE(TanhError, aarch64_neonfp16arith_expm1minus_rr1_p3h1ts_div,
                    xnn_math_f16_tanh__aarch64_neonfp16arith_expm1minus_rr1_p3h1ts_div,
                    /*num_flush_to_zero_values=*/kNumSubnormalValues + 1,
                    benchmark::utils::CheckNEONFP16ARITH)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, aarch64_neonfp16arith_expm1minus_rr1_p3h2ts_div,
                    xnn_math_f16_tanh__aarch64_neonfp16arith_expm1minus_rr1_p3h2ts_div,
                    /*num_flush_to_zero_values=*/kNumSubnormalValues,
                    benchmark::utils::CheckNEONFP16ARITH)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
#endif  // XNN_ENABLE_ARM_FP16_VECTOR && XNN_ARCH_ARM64

#if XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64)
  BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h1ts_nr1fma,
                    xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h1ts_nr1fma,
                    /*num_flush_to_zero_values=*/kNumSubnormalValues + 1,
                    benchmark::utils::CheckNEONFP16ARITH)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h1ts_nr1fmaadj,
                    xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h1ts_nr1fmaadj,
                    /*num_flush_to_zero_values=*/kNumSubnormalValues + 1,
                    benchmark::utils::CheckNEONFP16ARITH)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h1ts_nr1recps,
                    xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h1ts_nr1recps,
                    /*num_flush_to_zero_values=*/kNumSubnormalValues + 1,
                    benchmark::utils::CheckNEONFP16ARITH)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h1ts_nr1recpsadj,
                    xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h1ts_nr1recpsadj,
                    /*num_flush_to_zero_values=*/kNumSubnormalValues + 1,
                    benchmark::utils::CheckNEONFP16ARITH)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h1ts_recpe,
                    xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h1ts_recpe,
                    /*num_flush_to_zero_values=*/kNumSubnormalValues + 3,
                    benchmark::utils::CheckNEONFP16ARITH)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h1ts_recpeadj,
                    xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h1ts_recpeadj,
                    /*num_flush_to_zero_values=*/kNumSubnormalValues + 3,
                    benchmark::utils::CheckNEONFP16ARITH)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h2ts_nr1fma,
                    xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h2ts_nr1fma,
                    /*num_flush_to_zero_values=*/kNumSubnormalValues,
                    benchmark::utils::CheckNEONFP16ARITH)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h2ts_nr1fmaadj,
                    xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h2ts_nr1fmaadj,
                    /*num_flush_to_zero_values=*/kNumSubnormalValues,
                    benchmark::utils::CheckNEONFP16ARITH)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h2ts_nr1recps,
                    xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h2ts_nr1recps,
                    /*num_flush_to_zero_values=*/kNumSubnormalValues,
                    benchmark::utils::CheckNEONFP16ARITH)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h2ts_nr1recpsadj,
                    xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h2ts_nr1recpsadj,
                    /*num_flush_to_zero_values=*/kNumSubnormalValues,
                    benchmark::utils::CheckNEONFP16ARITH)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h2ts_recpe,
                    xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h2ts_recpe,
                    /*num_flush_to_zero_values=*/kNumSubnormalValues + 3,
                    benchmark::utils::CheckNEONFP16ARITH)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h2ts_recpeadj,
                    xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h2ts_recpeadj,
                    /*num_flush_to_zero_values=*/kNumSubnormalValues + 3,
                    benchmark::utils::CheckNEONFP16ARITH)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
#endif  // XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64)

#if XNN_ARCH_X86 || XNN_ARCH_X86_64
  BENCHMARK_CAPTURE(TanhError, avx2_expm1minus_rr1_p3h2ts_div,
                    xnn_math_f16_tanh__avx2_expm1minus_rr1_p3h2ts_div,
                    /*num_flush_to_zero_values=*/0,
                    benchmark::utils::CheckAVX2)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, avx2_expm1minus_rr1_p3h2ts_rcp,
                    xnn_math_f16_tanh__avx2_expm1minus_rr1_p3h2ts_rcp,
                    /*num_flush_to_zero_values=*/0,
                    benchmark::utils::CheckAVX2)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);

  BENCHMARK_CAPTURE(TanhError, fma3_expm1minus_rr1_p3h2ts_div,
                    xnn_math_f16_tanh__fma3_expm1minus_rr1_p3h2ts_div,
                    /*num_flush_to_zero_values=*/0,
                    benchmark::utils::CheckFMA3)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, fma3_expm1minus_rr1_p3h2ts_rcp,
                    xnn_math_f16_tanh__fma3_expm1minus_rr1_p3h2ts_rcp,
                    /*num_flush_to_zero_values=*/0,
                    benchmark::utils::CheckFMA3)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, fma3_polynomial_p17h8t2,
                    xnn_math_f16_tanh__fma3_polynomial_p17h8t2,
                    /*num_flush_to_zero_values=*/0,
                    benchmark::utils::CheckFMA3)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, fma3_polynomial_p19h9t2,
                    xnn_math_f16_tanh__fma3_polynomial_p19h9t2,
                    /*num_flush_to_zero_values=*/0,
                    benchmark::utils::CheckFMA3)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);

  BENCHMARK_CAPTURE(TanhError, f16c_expm1minus_rr1_p3h2ts_div,
                    xnn_math_f16_tanh__f16c_expm1minus_rr1_p3h2ts_div,
                    /*num_flush_to_zero_values=*/0,
                    benchmark::utils::CheckF16C)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, f16c_expm1minus_rr1_p3h2ts_rcp,
                    xnn_math_f16_tanh__f16c_expm1minus_rr1_p3h2ts_rcp,
                    /*num_flush_to_zero_values=*/0,
                    benchmark::utils::CheckF16C)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, f16c_polynomial_p17h8t2,
                    xnn_math_f16_tanh__f16c_polynomial_p17h8t2,
                    /*num_flush_to_zero_values=*/0,
                    benchmark::utils::CheckF16C)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
  BENCHMARK_CAPTURE(TanhError, f16c_polynomial_p19h9t2,
                    xnn_math_f16_tanh__f16c_polynomial_p19h9t2,
                    /*num_flush_to_zero_values=*/0,
                    benchmark::utils::CheckF16C)
    ->Unit(benchmark::kMillisecond)
    ->Iterations(1);
#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64

#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif