File size: 17,646 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert DATATYPE in ["F32", "QC4", "QC8"]
$if DATATYPE == "QC8" and SSE == 2:
$assert NR % 8 == 0
$elif DATATYPE == "QC4":
$assert NR == 8
$else:
$assert NR % 4 == 0
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$SSE_HEADER = "immintrin.h" if AVX else {1: "immintrin.h", 2: "emmintrin.h", 4: "smmintrin.h"}[SSE]
#include <assert.h>
#include <${SSE_HEADER}>
#include <xnnpack/gemm.h>
$if DATATYPE == "QC8" and SSE == 4:
#include <xnnpack/unaligned.h>
$ISA = {0: "avx", 3: "fma3"}[FMA] if AVX else {1: "sse", 2: "sse2", 4: "sse41"}[SSE]
$DATATYPE_SPEC = {"F32": "f32", "QC8": "f32_qc8w", "QC4": "f32_qc4w"}[DATATYPE]
void xnn_${DATATYPE_SPEC}_gemm${"inc" if INC else ""}_minmax_ukernel_${MR}x${NR}__${ISA}_dup(
size_t mr,
size_t nc,
size_t kc,
const float* restrict a,
size_t a_stride,
$if DATATYPE == "F32":
const float* restrict w,
$else:
const void* restrict w,
float* restrict c,
size_t cm_stride,
size_t cn_stride,
$if INC:
const float* restrict acc,
$if DATATYPE == "QC4":
const union xnn_f32_qc4w_minmax_params params[restrict XNN_MIN_ELEMENTS(1)])
$else:
const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(mr != 0);
assert(mr <= ${MR});
assert(nc != 0);
assert(kc != 0);
assert(kc % sizeof(float) == 0);
assert(a != NULL);
assert(w != NULL);
assert(c != NULL);
$if INC:
assert(acc != NULL);
const float* a0 = a;
float* c0 = c;
$for M in range(1, MR):
const float* a${M} = (const float*) ((uintptr_t) a${M-1} + a_stride);
float* c${M} = (float*) ((uintptr_t) c${M-1} + cm_stride);
$if M % 2 == 0:
if XNN_UNPREDICTABLE(mr <= ${M}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$elif M + 1 == MR:
if XNN_UNPREDICTABLE(mr != ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$else:
if XNN_UNPREDICTABLE(mr < ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$if DATATYPE == "QC4":
const __m128i vminus_kernel_zero_point = _mm_load_si128((const __m128i *) params->sse.minus_kernel_zero_point);
const __m128i vmask = _mm_load_si128((const __m128i *) params->sse.mask);
do {
$if INC:
$for M in range(MR):
$for N in range(0, NR, 4):
__m128 vacc${M}x${ABC[N:N+4]} = _mm_load_ps(acc + ${M*NR+N});
acc += ${MR*NR};
$else:
$for N in range(0, NR, 4):
$if DATATYPE == "F32":
__m128 vacc0x${ABC[N:N+4]} = _mm_load_ps(w + ${N});
$else:
__m128 vacc0x${ABC[N:N+4]} = _mm_loadu_ps((const float*) w + ${N});
$for M in range(1, MR):
$for N in range(0, NR, 4):
__m128 vacc${M}x${ABC[N:N+4]} = vacc0x${ABC[N:N+4]};
$if DATATYPE == "F32":
w += ${NR};
$else:
w = (const float*) w + ${NR};
size_t k = kc;
for (; k >= 4 * sizeof(float); k -= 4 * sizeof(float)) {
$for M in range(MR):
const __m128 va${M} = _mm_loadu_ps(a${M});
a${M} += 4;
$for L in range(4):
$LLLL = str(L) * 4
$for M in range(MR):
$if SSE >= 2 and L < 3:
const __m128 va${M}c${LLLL} = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(va${M}), _MM_SHUFFLE(${L}, ${L}, ${L}, ${L})));
$elif AVX >= 1:
const __m128 va${M}c${LLLL} = _mm_permute_ps(va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L}));
$else:
const __m128 va${M}c${LLLL} = _mm_shuffle_ps(va${M}, va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L}));
$if DATATYPE == "F32":
$for N in range(0, NR, 4):
const __m128 vb${ABC[N:N+4]}c${L} = _mm_load_ps(w + ${L * NR + N});
$elif DATATYPE == "QC4":
$if L % 4 == 0:
$if SSE >= 4:
$for N in range(0, NR, 8):
const __m128i vbwi${ABC[N:N+8]}c01 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2})));
const __m128i vbwi${ABC[N:N+8]}c23 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2 + 8})));
$for N in range(0, NR, 8):
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask);
__m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 4);
__m128i vbw${ABC[N:N+8]}c2 = _mm_and_si128(vbwi${ABC[N:N+8]}c23, vmask);
__m128i vbw${ABC[N:N+8]}c3 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c23, 4);
$else:
$for N in range(0, NR, 8):
__m128i vbi${ABC[N:N+8]}c0123 = _mm_loadu_si128((const __m128i *) ((const int8_t*) w + ${N * 2}));
$for N in range(0, NR, 8):
__m128i vbwi${ABC[N:N+8]}c01 = _mm_unpacklo_epi8(vbi${ABC[N:N+8]}c0123, vbi${ABC[N:N+8]}c0123);
__m128i vbwi${ABC[N:N+8]}c23 = _mm_unpackhi_epi8(vbi${ABC[N:N+8]}c0123, vbi${ABC[N:N+8]}c0123);
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask);
__m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 12);
__m128i vbw${ABC[N:N+8]}c2 = _mm_and_si128(vbwi${ABC[N:N+8]}c23, vmask);
__m128i vbw${ABC[N:N+8]}c3 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c23, 12);
$for N in range(0, NR, 8):
$if SSE >= 4:
__m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepu16_epi32(vbw${ABC[N:N+8]}c${L});
$else:
__m128i vbi${ABC[N:N+4]}c${L} = _mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128());
__m128i vbi${ABC[N+4:N+8]}c${L} = _mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128());
vbi${ABC[N:N+4]}c${L} = _mm_add_epi32(vbi${ABC[N:N+4]}c${L}, vminus_kernel_zero_point);
vbi${ABC[N+4:N+8]}c${L} = _mm_add_epi32(vbi${ABC[N+4:N+8]}c${L}, vminus_kernel_zero_point);
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L});
const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N+4:N+8]}c${L});
$elif DATATYPE == "QC8":
$if SSE >= 4:
$for N in range(0, NR, 4):
const __m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const int8_t*) w + ${L * NR + N})));
$for N in range(0, NR, 4):
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L});
$else:
$for N in range(0, NR, 8):
const __m128i vb${ABC[N:N+8]}c${L} = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${L * NR + N}));
$for N in range(0, NR, 8):
const __m128i vbw${ABC[N:N+8]}c${L} = _mm_unpacklo_epi8(vb${ABC[N:N+8]}c${L}, vb${ABC[N:N+8]}c${L});
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24));
const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24));
$for N in range(0, NR, 4):
$for M in range(MR):
$if FMA == 3:
vacc${M}x${ABC[N:N+4]} = _mm_fmadd_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L}, vacc${M}x${ABC[N:N+4]});
$else:
vacc${M}x${ABC[N:N+4]} = _mm_add_ps(vacc${M}x${ABC[N:N+4]}, _mm_mul_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L}));
$if DATATYPE == "F32":
w += ${NR * 4};
$elif DATATYPE == "QC4":
w = (const int8_t*) w + ${NR * 4 // 2};
$else:
w = (const int8_t*) w + ${NR * 4};
}
if XNN_UNLIKELY(k >= 2 * sizeof(float)) {
$for M in range(MR):
$if SSE >= 2:
const __m128 va${M} = _mm_castsi128_ps(_mm_loadl_epi64((const __m128i *) a${M}));
$else:
const __m128 va${M} = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) a${M});
a${M} += 2;
$for L in range(2):
$LLLL = str(L) * 4
$for M in range(MR):
$if SSE >= 2 and L < 3:
const __m128 va${M}c${LLLL} = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(va${M}), _MM_SHUFFLE(${L}, ${L}, ${L}, ${L})));
$elif AVX >= 1:
const __m128 va${M}c${LLLL} = _mm_permute_ps(va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L}));
$else:
const __m128 va${M}c${LLLL} = _mm_shuffle_ps(va${M}, va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L}));
$if DATATYPE == "F32":
$for N in range(0, NR, 4):
const __m128 vb${ABC[N:N+4]}c${L} = _mm_load_ps(w + ${L * NR + N});
$elif DATATYPE == "QC4":
$if L % 2 == 0:
$if SSE >= 4:
$for N in range(0, NR, 8):
const __m128i vbwi${ABC[N:N+8]}c01 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2})));
$for N in range(0, NR, 8):
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask);
__m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 4);
$else:
$for N in range(0, NR, 8):
__m128i vbi${ABC[N:N+8]}c01 = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2}));
$for N in range(0, NR, 8):
__m128i vbwi${ABC[N:N+8]}c01 = _mm_unpacklo_epi8(vbi${ABC[N:N+8]}c01, vbi${ABC[N:N+8]}c01);
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask);
__m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 12);
$for N in range(0, NR, 8):
$if SSE >= 4:
__m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepu16_epi32(vbw${ABC[N:N+8]}c${L});
$else:
__m128i vbi${ABC[N:N+4]}c${L} = _mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128());
__m128i vbi${ABC[N+4:N+8]}c${L} = _mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128());
vbi${ABC[N:N+4]}c${L} = _mm_add_epi32(vbi${ABC[N:N+4]}c${L}, vminus_kernel_zero_point);
vbi${ABC[N+4:N+8]}c${L} = _mm_add_epi32(vbi${ABC[N+4:N+8]}c${L}, vminus_kernel_zero_point);
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L});
const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N+4:N+8]}c${L});
$elif DATATYPE == "QC8":
$if SSE >= 4:
$for N in range(0, NR, 4):
const __m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const int8_t*) w + ${L * NR + N})));
$for N in range(0, NR, 4):
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L});
$else:
$for N in range(0, NR, 8):
const __m128i vb${ABC[N:N+8]}c${L} = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${L * NR + N}));
$for N in range(0, NR, 8):
const __m128i vbw${ABC[N:N+8]}c${L} = _mm_unpacklo_epi8(vb${ABC[N:N+8]}c${L}, vb${ABC[N:N+8]}c${L});
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24));
const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24));
$for N in range(0, NR, 4):
$for M in range(MR):
$if FMA == 3:
vacc${M}x${ABC[N:N+4]} = _mm_fmadd_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L}, vacc${M}x${ABC[N:N+4]});
$else:
vacc${M}x${ABC[N:N+4]} = _mm_add_ps(vacc${M}x${ABC[N:N+4]}, _mm_mul_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L}));
$if DATATYPE == "F32":
w += ${NR * 2};
$elif DATATYPE == "QC4":
w = (const int8_t*) w + ${NR * 2 // 2};
$else:
w = (const int8_t*) w + ${NR * 2};
k -= 2 * sizeof(float);
}
if XNN_UNLIKELY(k != 0) {
$for M in range(MR):
const __m128 va${M} = _mm_load1_ps(a${M});
a${M} += 1;
$if DATATYPE == "F32":
const __m128 vb${ABC[0:4]} = _mm_load_ps(w);
$for N in range(4, NR, 4):
const __m128 vb${ABC[N:N+4]} = _mm_load_ps(w + ${N});
w += ${NR};
$elif DATATYPE == "QC4":
$if SSE >= 4:
$for N in range(0, NR, 8):
const __m128i vbwi${ABC[N:N+8]}c0 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2})));
$for N in range(0, NR, 8):
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c0, vmask);
$else:
$for N in range(0, NR, 8):
__m128i vbi${ABC[N:N+8]}c0 = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2}));
$for N in range(0, NR, 8):
__m128i vbwi${ABC[N:N+8]}c0 = _mm_unpacklo_epi8(vbi${ABC[N:N+8]}c0, vbi${ABC[N:N+8]}c0);
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c0, vmask);
$for N in range(0, NR, 8):
$if SSE >= 4:
__m128i vbi${ABC[N:N+4]}c0 = _mm_cvtepu16_epi32(vbw${ABC[N:N+8]}c0);
$else:
__m128i vbi${ABC[N:N+4]}c0 = _mm_unpacklo_epi16(vbw${ABC[N:N+8]}c0, _mm_setzero_si128());
__m128i vbi${ABC[N+4:N+8]}c0 = _mm_unpackhi_epi16(vbw${ABC[N:N+8]}c0, _mm_setzero_si128());
vbi${ABC[N:N+4]}c0 = _mm_add_epi32(vbi${ABC[N:N+4]}c0, vminus_kernel_zero_point);
vbi${ABC[N+4:N+8]}c0 = _mm_add_epi32(vbi${ABC[N+4:N+8]}c0, vminus_kernel_zero_point);
const __m128 vb${ABC[N:N+4]} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c0);
const __m128 vb${ABC[N+4:N+8]} = _mm_cvtepi32_ps(vbi${ABC[N+4:N+8]}c0);
w = (const int8_t*) w + ${NR};
$elif DATATYPE == "QC8":
$if SSE >= 4:
const __m128i vbi${ABC[0:4]} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const void*) w)));
$for N in range(4, NR, 4):
const __m128i vbi${ABC[N:N+4]} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const int8_t*) w + ${N})));
$for N in range(0, NR, 4):
const __m128 vb${ABC[N:N+4]} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]});
$else:
$for N in range(0, NR, 8):
const __m128i vb${ABC[N:N+8]} = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N}));
$for N in range(0, NR, 8):
const __m128i vbw${ABC[N:N+8]} = _mm_unpacklo_epi8(vb${ABC[N:N+8]}, vb${ABC[N:N+8]});
const __m128 vb${ABC[N:N+4]} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(vbw${ABC[N:N+8]}, vbw${ABC[N:N+8]}), 24));
const __m128 vb${ABC[N+4:N+8]} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(vbw${ABC[N:N+8]}, vbw${ABC[N:N+8]}), 24));
w = (const int8_t*) w + ${NR};
$for N in range(0, NR, 4):
$for M in range(MR):
$if FMA == 3:
vacc${M}x${ABC[N:N+4]} = _mm_fmadd_ps(va${M}, vb${ABC[N:N+4]}, vacc${M}x${ABC[N:N+4]});
$else:
vacc${M}x${ABC[N:N+4]} = _mm_add_ps(vacc${M}x${ABC[N:N+4]}, _mm_mul_ps(va${M}, vb${ABC[N:N+4]}));
k -= sizeof(float);
}
$if DATATYPE in ["QC8", "QC4"]:
$for N in range(0, NR, 4):
const __m128 vscale${ABC[N:N+4]} = _mm_loadu_ps((const float*) w + ${N});
$for M in range(MR):
vacc${M}x${ABC[N:N+4]} = _mm_mul_ps(vacc${M}x${ABC[N:N+4]}, vscale${ABC[N:N+4]});
w = (const float*) w + ${NR};
const __m128 vmax = _mm_load_ps(params->sse.max);
$for N in range(0, NR, 4):
$for M in range(MR):
vacc${M}x${ABC[N:N+4]} = _mm_min_ps(vacc${M}x${ABC[N:N+4]}, vmax);
const __m128 vmin = _mm_load_ps(params->sse.min);
$for N in range(0, NR, 4):
$for M in range(MR):
vacc${M}x${ABC[N:N+4]} = _mm_max_ps(vacc${M}x${ABC[N:N+4]}, vmin);
if XNN_LIKELY(nc >= ${NR}) {
$for M in reversed(range(MR)):
_mm_storeu_ps(c${M}, vacc${M}x${ABC[0:4]});
$for N in range(4, NR, 4):
_mm_storeu_ps(c${M} + ${N}, vacc${M}x${ABC[N:N+4]});
c${M} = (float*) ((uintptr_t) c${M} + cn_stride);
$for M in reversed(range(MR)):
a${M} = (const float*) ((uintptr_t) a${M} - kc);
nc -= ${NR};
} else {
$for LOG2N in reversed(range(NR.bit_length())):
$if NR != 1 << LOG2N:
if (nc & ${1 << LOG2N}) {
$if LOG2N >= 2:
$for M in reversed(range(MR)):
_mm_storeu_ps(c${M}, vacc${M}x${ABC[0:4]});
$for N in range(4, 1 << LOG2N, 4):
_mm_storeu_ps(c${M} + ${N}, vacc${M}x${ABC[N:N+4]});
$for M in reversed(range(MR)):
$for N in range(0, NR - (1 << LOG2N), 4):
vacc${M}x${ABC[N:N+4]} = vacc${M}x${ABC[N + (1 << LOG2N):N + (1 << LOG2N)+4]};
$for M in reversed(range(MR)):
c${M} += ${1 << LOG2N};
$elif LOG2N == 1:
$for M in reversed(range(MR)):
_mm_storel_pi((__m64*) c${M}, vacc${M}x${ABC[0:4]});
$for M in reversed(range(MR)):
vacc${M}x${ABC[0:4]} = _mm_movehl_ps(vacc${M}x${ABC[0:4]}, vacc${M}x${ABC[0:4]});
$for M in reversed(range(MR)):
c${M} += 2;
$elif LOG2N == 0:
$for M in reversed(range(MR)):
_mm_store_ss(c${M}, vacc${M}x${ABC[0:4]});
}
nc = 0;
}
} while (nc != 0);
}
|