File size: 6,697 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert DATATYPE in ["F32", "QC4", "QC8"]
$assert ACTIVATION in ["LINEAR", "RELU", "MINMAX"]
$assert ACTIVATION != "LINEAR" or not WASM
$if DATATYPE == "QC4":
$assert ACTIVATION == "MINMAX"
$assert NR % 2 == 0
#include <assert.h>
#include <xnnpack/gemm.h>
#include <xnnpack/math.h>
$if DATATYPE in ["QC4", "QC8"] and NR % 4 != 0:
#include <xnnpack/unaligned.h>
$DATATYPE_SPEC = {"F32": "f32", "QC8": "f32_qc8w", "QC4": "f32_qc4w"}[DATATYPE]
$MIN_F32 = "__builtin_wasm_min_f32" if WASM else "math_min_f32"
$MAX_F32 = "__builtin_wasm_max_f32" if WASM else "math_max_f32"
$KERNEL = "gemminc" if INC else "gemm"
$SUFFIX = {"LINEAR": "", "RELU": "_relu", "MINMAX": "_minmax"}[ACTIVATION]
$PARAMS = {"LINEAR": "xnn_f32_default_params", "RELU": "xnn_f32_relu_params", "MINMAX": "xnn_f32_minmax_params"}[ACTIVATION]
void xnn_${DATATYPE_SPEC}_${KERNEL}${SUFFIX}_ukernel_${MR}x${NR}__${"wasm" if WASM else "scalar"}(
size_t mr,
size_t nc,
size_t kc,
const float* restrict a,
size_t a_stride,
$if DATATYPE == "F32":
const float* restrict w,
$else:
const void* restrict w,
float* restrict c,
size_t cm_stride,
size_t cn_stride,
$if INC:
const float* restrict acc,
$if DATATYPE == "QC4":
const union xnn_f32_qc4w_minmax_params params[restrict XNN_MIN_ELEMENTS(1)])
$else:
const union ${PARAMS} params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(mr != 0);
assert(mr <= ${MR});
assert(nc != 0);
assert(kc != 0);
assert(kc % sizeof(float) == 0);
assert(a != NULL);
assert(w != NULL);
assert(c != NULL);
$if INC:
assert(acc != NULL);
const float* a0 = a;
float* c0 = c;
$for M in range(1, MR):
const float* a${M} = (const float*) ((uintptr_t) a${M-1} + a_stride);
float* c${M} = (float*) ((uintptr_t) c${M-1} + cm_stride);
$if M % 2 == 0:
if XNN_UNPREDICTABLE(mr <= ${M}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$elif M + 1 == MR:
if XNN_UNPREDICTABLE(mr != ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$else:
if XNN_UNPREDICTABLE(mr < ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$if ACTIVATION == "MINMAX":
const float vmin = params->scalar.min;
const float vmax = params->scalar.max;
$if DATATYPE == "QC4":
const int32_t vminus_kernel_zero_point = params->scalar.minus_kernel_zero_point[0];
do {
$if INC:
$for M in range(MR):
$for N in range(NR):
float vacc${M}${N} = acc[${M*NR+N}];
acc += ${MR*NR};
$else:
$if DATATYPE == "F32":
$for N in range(NR):
float vacc0${N} = w[${N}];
w += ${NR};
$else:
$for N in range(NR):
$if NR % 4 == 0:
float vacc0${N} = ((const float*)w)[${N}];
$else:
float vacc0${N} = unaligned_indexed_load_f32(w, ${N});
w = (const float*) w + ${NR};
$for M in range(1, MR):
$for N in range(NR):
float vacc${M}${N} = vacc0${N};
size_t k = kc;
$if DATATYPE == "QC4":
for (; k >= 2 * sizeof(float); k -= 2 * sizeof(float)) {
$for M in range(MR):
const float va${M}0 = *a${M}++;
const float va${M}1 = *a${M}++;
$for N in range(NR):
const uint8_t vbi${N} = ((const uint8_t*) w)[${N}];
$for N in range(NR):
const float vb${N}0 = (float) ((int32_t) (vbi${N} & 0xF) + vminus_kernel_zero_point);
$for N in range(NR):
const float vb${N}1 = (float) ((int32_t) (vbi${N} >> 4) + vminus_kernel_zero_point);
w = (const int8_t*) w + ${NR};
$for M in range(MR):
$for N in range(NR):
vacc${M}${N} = math_muladd_f32(va${M}0, vb${N}0, vacc${M}${N});
$for M in range(MR):
$for N in range(NR):
vacc${M}${N} = math_muladd_f32(va${M}1, vb${N}1, vacc${M}${N});
}
if XNN_UNLIKELY(k != 0) {
$for M in range(MR):
const float va${M} = *a${M}++;
$for N in range(NR):
const uint8_t vbi${N} = ((const uint8_t*) w)[${N}];
$for N in range(NR):
const float vb${N} = (float) ((int32_t) vbi${N} + vminus_kernel_zero_point);
w = (const int8_t*) w + ${NR};
$for M in range(MR):
$for N in range(NR):
vacc${M}${N} = math_muladd_f32(va${M}, vb${N}, vacc${M}${N});
}
$else:
do {
$for M in range(MR):
const float va${M} = *a${M}++;
$if DATATYPE == "F32":
$for N in range(NR):
const float vb${N} = w[${N}];
w += ${NR};
$elif DATATYPE == "QC8":
$for N in range(NR):
const float vb${N} = (float) ((const int8_t*) w)[${N}];
w = (const int8_t*) w + ${NR};
$for M in range(MR):
$for N in range(NR):
vacc${M}${N} = math_muladd_f32(va${M}, vb${N}, vacc${M}${N});
k -= sizeof(float);
} while (k != 0);
$if DATATYPE in ["QC8", "QC4"]:
$for N in range(NR):
$if NR % 4 == 0:
const float vscale${N} = ((const float*)w)[${N}];
$else:
const float vscale${N} = unaligned_indexed_load_f32(w, ${N});
w = (const float*) w + ${NR};
$for N in range(NR):
$for M in range(MR):
vacc${M}${N} *= vscale${N};
$if ACTIVATION == "MINMAX":
$for M in range(MR):
$for N in range(NR):
vacc${M}${N} = ${MAX_F32}(vacc${M}${N}, vmin);
$for M in range(MR):
$for N in range(NR):
vacc${M}${N} = ${MIN_F32}(vacc${M}${N}, vmax);
$elif ACTIVATION == "RELU":
$for M in range(MR):
$for N in range(NR):
vacc${M}${N} = ${MAX_F32}(vacc${M}${N}, 0.0f);
if XNN_LIKELY(nc >= ${NR}) {
$for M in reversed(range(MR)):
$for N in range(NR):
c${M}[${N}] = vacc${M}${N};
c${M} = (float*) ((uintptr_t) c${M} + cn_stride);
$for M in reversed(range(MR)):
a${M} = (const void*) ((uintptr_t) a${M} - kc);
nc -= ${NR};
} else {
$for LOG2N in reversed(range(NR.bit_length() - 1)):
if (nc & ${1 << LOG2N}) {
$for M in reversed(range(MR)):
$for N in range(1 << LOG2N):
c${M}[${N}] = vacc${M}${N};
$if LOG2N != 0:
$for N in range(NR - (1 << LOG2N) - 1):
vacc${M}${N} = vacc${M}${N + (1 << LOG2N)};
c${M} += ${1 << LOG2N};
}
nc = 0;
}
} while (nc != 0);
}
|