File size: 6,798 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
// Copyright 2023 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <cassert>
#include <cstddef>
#include <limits>
#include <xnnpack.h>
#include <xnnpack/aarch32-assembler.h>
#include <xnnpack/gemm.h>
#include <xnnpack/memory.h>
#include <xnnpack/microparams.h>
#include <xnnpack/post-operation.h>
namespace xnnpack {
namespace aarch32 {
namespace {
class Generator : public MacroAssembler {
using MacroAssembler::MacroAssembler;
public:
void generate(bool prefetch, size_t max_mr, size_t nc_mod_nr, size_t kc, const jit_gemm_params* jit_gemm_params);
void perform_post_operations(size_t max_mr, size_t num_post_operations, const xnn_post_operation* post_operations);
};
// void xnn_f32_gemm_minmax_ukernel_1x8__asm_aarch32_neon_cortex_a53_prfm(
// size_t mr, r0
// size_t nc, r1
// size_t kc, r2 -> r0
// const uint8_t* restrict a, r3
// size_t a_stride, sp + 8 -> (unused)
// const void* restrict w, sp + 12 -> r9
// uint8_t* restrict c, sp + 16 -> r12
// size_t cm_stride, sp + 20 -> (unused)
// size_t cn_stride, sp + 24 -> r7
// xnn_f32_minmax_params params) sp + 28 -> (r0)
// d8-d31, r4-r11,r14(lr) need to be preserved if used. r13(sp),r15(pc) are reserved.
// Register usage
// A0 r3 d0
// B r9 d24, d25, d26, d27
// B d28, d29, d30, d31
// C0 r12 d16-d17 q8 d18-d19 q9 q10 q11
// clamp (r0) d4 d5 d6 d7
// Converted from: src/f32-gemm/gen/f32-gemm-1x8-minmax-asm-aarch32-neon-cortex-a53-prfm.S
void Generator::generate(bool prefetch, size_t max_mr, size_t nc_mod_nr, size_t kc, const jit_gemm_params* jit_gemm_params)
{
assert(max_mr <= 1);
assert(nc_mod_nr < 8);
assert(kc != 0);
assert(kc % sizeof(float) == 0);
Label l0, l1, l2, l3, l4, l5, l6, l7;
const size_t num_post_operations = jit_gemm_params->num_post_operations;
const xnn_post_operation* post_operations = jit_gemm_params->post_operations;
const float min = jit_gemm_params->f32_minmax.min;
const float max = jit_gemm_params->f32_minmax.max;
const bool clamp_min = min != -std::numeric_limits<float>::infinity();
const bool clamp_max = max != +std::numeric_limits<float>::infinity();
assert(num_post_operations == 0 || (!clamp_min && !clamp_max));
// Push 8 bytes
push({r7, r9}); // 8
ldr(r0, mem[sp, 28]); // params
ldr(r9, mem[sp, 12]); // w
ldr(r12, mem[sp, 16]); // c
// Load min/max values
if (clamp_min || clamp_max) {
vld1r_32({d4, d5}, mem[r0]++);
}
ldr(r7, mem[sp, 24]); // cn_stride
if (clamp_min || clamp_max) {
vld1r_32({d6, d7}, mem[r0]);
}
bind(l0);
// Load initial bias from w into accumulators
vldm(mem[r9]++, {d16-d19}); // Bias
vmov_i32(q10, 0); // second set of C for pipelining VMLA
subs(r0, r2, 8);
vmov_i32(q11, 0);
if (prefetch) {
pld(mem[r3, 0]); // Prefetch A
pld(mem[r3, 64]);
pld(mem[r9, 0]); // Prefetch B
pld(mem[r9, 64]);
pld(mem[r9, 128]);
pld(mem[r9, 192]);
pld(mem[r9, 256]);
pld(mem[r9, 320]);
pld(mem[r9, 384]);
pld(mem[r9, 448]);
pld(mem[r9, 512]);
pld(mem[r9, 576]);
}
blo(l3); // less than 2 channels?
// Main loop - 2 floats of A (8 bytes)
bind(l1);
vldm(mem[r9]++, {d24-d27}); // B0
vld1_32({d0}, mem[r3]++); // A0
vldm(mem[r9]++, {d28-d31}); // B1
vmla_f32(q8, q12, d0[0]);
vmla_f32(q9, q13, d0[0]);
if (prefetch) {
pld(mem[r9, 576]); // Prefetch B
}
vmla_f32(q10, q14, d0[1]);
vmla_f32(q11, q15, d0[1]);
subs(r0, r0, 8);
if (prefetch) {
pld(mem[r3, 128]); // Prefetch A0
}
bhs(l1);
// Is there a remainder?- 1 float of A (4 bytes)
tst(r0, 4);
bne(l3);
bind(l2);
vadd_f32(q8, q8, q10);
vadd_f32(q9, q9, q11);
// Clamp
if (clamp_min) {
vmax_f32(q8, q8, q2);
}
subs(r1, r1, 8);
if (clamp_min) {
vmax_f32(q9, q9, q2);
}
if (clamp_max) {
vmin_f32(q8, q8, q3);
vmin_f32(q9, q9, q3);
}
perform_post_operations(max_mr, num_post_operations, post_operations);
// Store full 4 x 8
blo(l4);
vst1_32({d16-d19}, mem[r12], r7);
sub(r3, r3, r2);
bhi(l0);
pop({r7, r9});
bx(lr);
bind(l3);
// Remainder- 1 float of A (4 bytes)
vldm(mem[r3]++, {s0}); // A0
vldm(mem[r9]++, {d24-d27}); // B0
vmla_f32(q8, q12, d0[0]);
vmla_f32(q9, q13, d0[0]);
b(l2);
// Store odd width
bind(l4);
tst(r1, 4);
beq(l5);
vst1_32({d16-d17}, mem[r12]++);
vmov(q8, q9);
bind(l5);
tst(r1, 2);
beq(l6);
vst1_32({d16}, mem[r12]++);
vmov(d16, d17);
bind(l6);
tst(r1, 1);
beq(l7);
vst1_32({d16[0]}, mem[r12]);
bind(l7);
pop({r7, r9});
bx(lr);
align(16);
}
void Generator::perform_post_operations(
size_t max_mr,
size_t num_post_operations,
const xnn_post_operation* post_operations)
{
if (num_post_operations == 0) {
return;
}
ldr(r0, mem[sp, 28]); // params
for (size_t i = 0; i < num_post_operations; i++) {
switch (post_operations[i].op_type) {
case xnn_post_operation_type_hardswish: {
const auto sixth = q0;
const auto three = q1;
const auto six = q2;
const auto zero = q3;
vld3r_32({sixth.low(), three.low(), six.low()}, mem[r0]++);
vmov(zero, 0);
vmov(three.high(), three.low());
vmov(six.high(), six.low());
const QRegister accs[] = {q8, q9};
const QRegister tmps[] = {q12, q13};
f32_hardswish(sixth, three, six, zero, &accs[0], XNN_COUNT_OF(accs), &tmps[0], XNN_COUNT_OF(tmps));
break;
}
default:
XNN_UNREACHABLE;
}
}
}
} // namespace
} // namespace aarch32
} // namespace xnnpack
xnn_status_t xnn_generate_f32_gemm_ukernel_1x8__aarch32_neon_cortex_a53(xnn_code_buffer* code, size_t max_mr, size_t nc_mod_nr, size_t kc, const void* params) {
using namespace xnnpack::aarch32;
Generator g(code);
assert(params != nullptr);
g.generate(false, max_mr, nc_mod_nr, kc, static_cast<const jit_gemm_params*>(params));
g.finalize();
if (g.error() != xnnpack::Error::kNoError) {
return xnn_status_invalid_state;
}
return xnn_status_success;
}
xnn_status_t xnn_generate_f32_gemm_ukernel_1x8__aarch32_neon_cortex_a53_prfm(xnn_code_buffer* code, size_t max_mr, size_t nc_mod_nr, size_t kc, const void* params) {
using namespace xnnpack::aarch32;
Generator g(code);
assert(params != nullptr);
g.generate(true, max_mr, nc_mod_nr, kc, static_cast<const jit_gemm_params*>(params));
g.finalize();
if (g.error() != xnnpack::Error::kNoError) {
return xnn_status_invalid_state;
}
return xnn_status_success;
}
|