File size: 6,743 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert CHANNEL_TILE % 8 == 0
$assert KERNEL_TILE >= 2
$assert ACCUMULATORS >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/dwconv.h>
$ISA = {0: "avx", 3: "fma3"}[FMA]
void xnn_f32_dwconv_minmax_ukernel_${KERNEL_TILE}p${CHANNEL_TILE}c__${ISA}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t channels,
size_t output_width,
const float** input,
const float* weights,
float* output,
intptr_t input_stride,
size_t output_increment,
size_t input_offset,
const float* zero,
const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(channels != 0);
assert(output_width != 0);
const __m256 vmin = _mm256_load_ps(params->avx.min);
const __m256 vmax = _mm256_load_ps(params->avx.max);
do {
$for K in range(KERNEL_TILE):
const float* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const float*) ((uintptr_t) i${K} + input_offset);
}
input = (const float**) ((uintptr_t) input + input_stride);
size_t c = channels;
const float* w = weights;
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
__m256 vacc${ABC[0:8]}p0 = _mm256_load_ps(w);
$for C in range(8, CHANNEL_TILE, 8):
__m256 vacc${ABC[C:C+8]}p0 = _mm256_load_ps(w + ${C});
$for K in range(KERNEL_TILE):
const __m256 vi${K}x${ABC[0:8]} = _mm256_loadu_ps(i${K});
$for C in range(8, CHANNEL_TILE, 8):
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_loadu_ps(i${K} + ${C});
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 8):
const __m256 vk${K}x${ABC[C:C+8]} = _mm256_load_ps(w + ${(K + 1) * CHANNEL_TILE + C});
$for C in range(0, CHANNEL_TILE, 8):
$if 1 <= K < ACCUMULATORS:
__m256 vacc${ABC[C:C+8]}p${K} = _mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$elif FMA == 3:
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS});
$else:
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_add_ps(vacc${ABC[C:C+8]}p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}));
w += ${(KERNEL_TILE + 1) * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]}p${A} = _mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE});
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 8):
__m256 vacc${ABC[C:C+8]} = _mm256_max_ps(vmin, vacc${ABC[C:C+8]}p0);
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} = _mm256_min_ps(vmax, vacc${ABC[C:C+8]});
_mm256_storeu_ps(output, vacc${ABC[0:8]});
$for C in range(8, CHANNEL_TILE, 8):
_mm256_storeu_ps(output + ${C}, vacc${ABC[C:C+8]});
output += ${CHANNEL_TILE};
}
$if CHANNEL_TILE > 8:
for (; c >= 8; c -= 8) {
__m256 vacc01234567p0 = _mm256_load_ps(w);
$for K in range(KERNEL_TILE):
const __m256 vi${K}x01234567 = _mm256_loadu_ps(i${K});
i${K} += 8;
const __m256 vk${K}x01234567 = _mm256_load_ps(w + ${(K + 1) * CHANNEL_TILE});
$if 1 <= K < ACCUMULATORS:
__m256 vacc01234567p${K} = _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567);
$elif FMA == 3:
vacc01234567p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS});
$else:
vacc01234567p${K % ACCUMULATORS} = _mm256_add_ps(vacc01234567p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567));
w += 8;
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:8]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc01234567p${A} = _mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE});
$ACC_SLICE *= 2
__m256 vacc01234567 = _mm256_max_ps(vmin, vacc01234567p0);
vacc01234567 = _mm256_min_ps(vmax, vacc01234567);
_mm256_storeu_ps(output, vacc01234567);
output += 8;
}
if XNN_UNLIKELY(c != 0) {
assert(c >= 1);
assert(c <= 7);
const __m256i vmask = _mm256_loadu_si256((const __m256i*) ¶ms->avx.mask_table[7 - c]);
__m256 vacc01234567p0 = _mm256_load_ps(w);
$for K in range(KERNEL_TILE):
const __m256 vi${K}x01234567 = _mm256_maskload_ps(i${K}, vmask);
const __m256 vk${K}x01234567 = _mm256_load_ps(w + ${(K + 1) * CHANNEL_TILE});
$if 1 <= K < ACCUMULATORS:
__m256 vacc01234567p${K} = _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567);
$elif FMA == 3:
vacc01234567p${K % ACCUMULATORS} = _mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS});
$else:
vacc01234567p${K % ACCUMULATORS} = _mm256_add_ps(vacc01234567p${K % ACCUMULATORS}, _mm256_mul_ps(vi${K}x01234567, vk${K}x01234567));
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:8]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc01234567p${A} = _mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE});
$ACC_SLICE *= 2
__m256 vacc01234567 = _mm256_max_ps(vmin, vacc01234567p0);
vacc01234567 = _mm256_min_ps(vmax, vacc01234567);
__m128 vacc0123 = _mm256_castps256_ps128(vacc01234567);
if (c & 4) {
_mm_storeu_ps(output, vacc0123);
vacc0123 = _mm256_extractf128_ps(vacc01234567, 1);
output += 4;
}
if (c & 2) {
_mm_storel_pi((__m64*) output, vacc0123);
vacc0123 = _mm_movehl_ps(vacc0123, vacc0123);
output += 2;
}
if (c & 1) {
_mm_store_ss(output, vacc0123);
output += 1;
}
}
output = (float*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}
|