File size: 4,970 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert BATCH_TILE % 8 == 0
$assert BATCH_TILE >= 8
$ABC = "01234567456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$assert OP in ["ADD", "DIV", "MAX", "MIN", "MUL", "SUB", "SQRDIFF"]
$assert ACTIVATION in ["LINEAR", "MINMAX"]
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/common.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/vbinary.h>
$_MM256_OP_PS = {
$ "ADD": lambda x, y: "_mm256_add_ps(%s, %s)" % (x, y),
$ "DIV": lambda x, y: "_mm256_div_ps(%s, %s)" % (x, y),
$ "MAX": lambda x, y: "_mm256_max_ps(%s, %s)" % (x, y),
$ "MIN": lambda x, y: "_mm256_min_ps(%s, %s)" % (x, y),
$ "MUL": lambda x, y: "_mm256_mul_ps(%s, %s)" % (x, y),
$ "SUB": lambda x, y: "_mm256_sub_ps(%s, %s)" % (x, y),
$ "SQRDIFF": lambda x, y: "_mm256_sub_ps(%s, %s)" % (x, y),
$}[OP]
$SUFFIX = {"LINEAR": "", "MINMAX": "_minmax"}[ACTIVATION]
$PARAMS = {"LINEAR": "xnn_f16_default_params", "MINMAX": "xnn_f16_minmax_params"}[ACTIVATION]
void xnn_f16_v${OP.lower()}${SUFFIX}_ukernel__f16c_x${BATCH_TILE}(
size_t batch,
const void* restrict input_a,
const void* restrict input_b,
void* restrict output,
const union ${PARAMS} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(batch != 0);
assert(batch % sizeof(uint16_t) == 0);
assert(input_a != NULL);
assert(input_b != NULL);
assert(output != NULL);
const uint16_t* a = (const uint16_t*) input_a;
const uint16_t* b = (const uint16_t*) input_b;
uint16_t* o = (uint16_t*) output;
$if ACTIVATION == "MINMAX":
const __m256 vy_min = _mm256_load_ps(params->avx.min);
const __m256 vy_max = _mm256_load_ps(params->avx.max);
$if BATCH_TILE > 8:
for (; batch >= ${BATCH_TILE} * sizeof(uint16_t); batch -= ${BATCH_TILE} * sizeof(uint16_t)) {
const __m256 va${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) a));
const __m256 vb${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) b));
$for N in range(8, BATCH_TILE, 8):
const __m256 va${ABC[N:N+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (a + ${N})));
const __m256 vb${ABC[N:N+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (b + ${N})));
a += ${BATCH_TILE};
b += ${BATCH_TILE};
$for N in range(0, BATCH_TILE, 8):
__m256 vy${ABC[N:N+8]} = _mm256_cvtph_ps(_mm256_cvtps_ph(${_MM256_OP_PS("va" + ABC[N:N+8], "vb" + ABC[N:N+8])}, _MM_FROUND_TO_NEAREST_INT));
$if OP == "SQRDIFF":
$for N in range(0, BATCH_TILE, 8):
vy${ABC[N:N+8]} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vy${ABC[N:N+8]}, vy${ABC[N:N+8]}), _MM_FROUND_TO_NEAREST_INT));
$if ACTIVATION == "MINMAX":
$for N in range(0, BATCH_TILE, 8):
vy${ABC[N:N+8]} = _mm256_max_ps(vy${ABC[N:N+8]}, vy_min);
$for N in range(0, BATCH_TILE, 8):
vy${ABC[N:N+8]} = _mm256_min_ps(vy${ABC[N:N+8]}, vy_max);
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT));
$for N in range(8, BATCH_TILE, 8):
_mm_storeu_si128((__m128i*) (o + ${N}), _mm256_cvtps_ph(vy${ABC[N:N+8]}, _MM_FROUND_TO_NEAREST_INT));
o += ${BATCH_TILE};
}
for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) {
const __m256 va = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) a));
const __m256 vb = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) b));
a += 8;
b += 8;
__m256 vy = _mm256_cvtph_ps(_mm256_cvtps_ph(${_MM256_OP_PS("va", "vb")}, _MM_FROUND_TO_NEAREST_INT));
$if OP == "SQRDIFF":
vy = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vy, vy), _MM_FROUND_TO_NEAREST_INT));
$if ACTIVATION == "MINMAX":
vy = _mm256_max_ps(vy, vy_min);
vy = _mm256_min_ps(vy, vy_max);
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy, _MM_FROUND_TO_NEAREST_INT));
o += 8;
}
if XNN_UNLIKELY(batch != 0) {
const __m256 va = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) a));
const __m256 vb = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) b));
__m256 vy = _mm256_cvtph_ps(_mm256_cvtps_ph(${_MM256_OP_PS("va", "vb")}, _MM_FROUND_TO_NEAREST_INT));
$if OP == "SQRDIFF":
vy = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vy, vy), _MM_FROUND_TO_NEAREST_INT));
$if ACTIVATION == "MINMAX":
vy = _mm256_max_ps(vy, vy_min);
vy = _mm256_min_ps(vy, vy_max);
__m128i vh = _mm256_cvtps_ph(vy, _MM_FROUND_TO_NEAREST_INT);
if (batch & (4 * sizeof(uint16_t))) {
_mm_storel_epi64((__m128i*) o, vh);
vh = _mm_unpackhi_epi64(vh, vh);
o += 4;
}
if (batch & (2 * sizeof(uint16_t))) {
_mm_storeu_si32(o, vh);
vh = _mm_srli_epi64(vh, 32);
o += 2;
}
if (batch & (1 * sizeof(uint16_t))) {
*o = (uint16_t) _mm_extract_epi16(vh, 0);
}
}
}
|