File size: 7,201 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
// Auto-generated file. Do not edit!
// Template: src/f16-raddstoreexpminusmax/avx2-rr1-p2.c.in
// Generator: tools/xngen
//
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/raddstoreexpminusmax.h>
void xnn_f16_raddstoreexpminusmax_ukernel__avx2_rr1_p2_x32_acc2(
size_t batch,
const void* input,
const void* max,
void* output,
void* sum,
const union xnn_f16_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(batch != 0);
assert(batch % sizeof(uint16_t) == 0);
assert(input != NULL);
assert(max != NULL);
assert(output != NULL);
assert(sum != NULL);
const __m256 vi_max = _mm256_cvtph_ps(_mm_set1_epi16((short) *((const uint16_t*) max)));
const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p2.log2e);
const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p2.magic_bias);
const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p2.minus_ln2);
const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p2.c2);
const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p2.c1);
const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p2.denorm_cutoff);
const uint16_t* i = (const uint16_t*) input;
uint16_t* o = (uint16_t*) output;
__m256 vacc0 = _mm256_setzero_ps();
__m256 vacc1 = _mm256_setzero_ps();
for (; batch >= 32 * sizeof(uint16_t); batch -= 32 * sizeof(uint16_t)) {
const __m256 vi0 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
const __m256 vi1 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + 8)));
const __m256 vi2 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + 16)));
const __m256 vi3 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + 24)));
i += 32;
const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
const __m256 vx2 = _mm256_sub_ps(vi2, vi_max);
const __m256 vx3 = _mm256_sub_ps(vi3, vi_max);
__m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
__m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
__m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias);
__m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias);
const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
vn0 = _mm256_sub_ps(vn0, vmagic_bias);
vn1 = _mm256_sub_ps(vn1, vmagic_bias);
vn2 = _mm256_sub_ps(vn2, vmagic_bias);
vn3 = _mm256_sub_ps(vn3, vmagic_bias);
__m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vx0);
__m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vx1);
__m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vx2);
__m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vx3);
const __m256 vp0 = _mm256_fmadd_ps(vc2, vt0, vc1);
const __m256 vp1 = _mm256_fmadd_ps(vc2, vt1, vc1);
const __m256 vp2 = _mm256_fmadd_ps(vc2, vt2, vc1);
const __m256 vp3 = _mm256_fmadd_ps(vc2, vt3, vc1);
vt0 = _mm256_mul_ps(vt0, vs0);
vt1 = _mm256_mul_ps(vt1, vs1);
vt2 = _mm256_mul_ps(vt2, vs2);
vt3 = _mm256_mul_ps(vt3, vs3);
__m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
__m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
__m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2);
__m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3);
vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2);
vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3);
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf0, _MM_FROUND_TO_NEAREST_INT));
_mm_storeu_si128((__m128i*) (o + 8), _mm256_cvtps_ph(vf1, _MM_FROUND_TO_NEAREST_INT));
_mm_storeu_si128((__m128i*) (o + 16), _mm256_cvtps_ph(vf2, _MM_FROUND_TO_NEAREST_INT));
_mm_storeu_si128((__m128i*) (o + 24), _mm256_cvtps_ph(vf3, _MM_FROUND_TO_NEAREST_INT));
o += 32;
vacc0 = _mm256_add_ps(vacc0, vf0);
vacc1 = _mm256_add_ps(vacc1, vf1);
vacc0 = _mm256_add_ps(vacc0, vf2);
vacc1 = _mm256_add_ps(vacc1, vf3);
}
vacc0 = _mm256_add_ps(vacc0, vacc1);
__m256 vacc = vacc0;
for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) {
const __m256 vi = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
i += 8;
const __m256 vx = _mm256_sub_ps(vi, vi_max);
__m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
vn = _mm256_sub_ps(vn, vmagic_bias);
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx);
const __m256 vp = _mm256_fmadd_ps(vc2, vt, vc1);
vt = _mm256_mul_ps(vt, vs);
__m256 vf = _mm256_fmadd_ps(vt, vp, vs);
vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf, _MM_FROUND_TO_NEAREST_INT));
o += 8;
vacc = _mm256_add_ps(vacc, vf);
}
__m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1));
if (batch != 0) {
assert(batch >= 1 * sizeof(uint16_t));
assert(batch <= 7 * sizeof(uint16_t));
const __m256 vi = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
const __m256 vx = _mm256_sub_ps(vi, vi_max);
__m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
vn = _mm256_sub_ps(vn, vmagic_bias);
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vx);
const __m256 vp = _mm256_fmadd_ps(vc2, vt, vc1);
vt = _mm256_mul_ps(vt, vs);
__m256 vf = _mm256_fmadd_ps(vt, vp, vs);
vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
__m128i vh = _mm256_cvtps_ph(vf, _MM_FROUND_TO_NEAREST_INT);
__m128 vf_lo = _mm256_castps256_ps128(vf);
if (batch & (4 * sizeof(uint16_t))) {
_mm_storel_epi64((__m128i*) o, vh);
vh = _mm_unpackhi_epi64(vh, vh);
vacc_lo = _mm_add_ps(vacc_lo, vf_lo);
vf_lo = _mm256_extractf128_ps(vf, 1);
o += 4;
}
if (batch & (2 * sizeof(uint16_t))) {
_mm_storeu_si32(o, vh);
vh = _mm_srli_epi64(vh, 32);
vacc_lo = _mm_blend_ps(_mm_add_ps(vacc_lo, vf_lo), vacc_lo, 0xC);
vf_lo = _mm_movehl_ps(vf_lo, vf_lo);
o += 2;
}
if (batch & (1 * sizeof(uint16_t))) {
*o = (uint16_t) _mm_extract_epi16(vh, 0);
vacc_lo = _mm_add_ss(vacc_lo, vf_lo);
}
}
vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo));
vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo));
*((uint16_t*) sum) = (uint16_t) _mm_extract_epi16(_mm_cvtps_ph(vacc_lo, _MM_FROUND_TO_NEAREST_INT), 0);
_mm256_zeroupper();
}
|