File size: 5,049 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
// Auto-generated file. Do not edit!
//   Template: src/f16-dwconv/unipass-neonfp16arith.c.in
//   Generator: tools/xngen
//
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

#include <assert.h>

#include <arm_neon.h>

#include <xnnpack/dwconv.h>


void xnn_f16_dwconv_minmax_ukernel_4p8c__neonfp16arith(
    size_t channels,
    size_t output_width,
    const void** input,
    const void* weights,
    void* output_ptr,
    intptr_t input_stride,
    size_t output_increment,
    size_t input_offset,
    const void* zero,
    const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
  assert(channels != 0);
  assert(output_width != 0);

  uint16_t* output = (uint16_t*) output_ptr;
  const float16x8_t vmin = vreinterpretq_f16_u16(vld1q_dup_u16(&params->fp16arith.min));
  const float16x8_t vmax = vreinterpretq_f16_u16(vld1q_dup_u16(&params->fp16arith.max));
  do {
    const uint16_t* i0 = (const uint16_t*) input[0];
    assert(i0 != NULL);
    if XNN_UNPREDICTABLE(i0 != (const uint16_t*) zero) {
      i0 = (const uint16_t*) ((uintptr_t) i0 + input_offset);
    }
    const uint16_t* i1 = (const uint16_t*) input[1];
    assert(i1 != NULL);
    if XNN_UNPREDICTABLE(i1 != (const uint16_t*) zero) {
      i1 = (const uint16_t*) ((uintptr_t) i1 + input_offset);
    }
    const uint16_t* i2 = (const uint16_t*) input[2];
    assert(i2 != NULL);
    if XNN_UNPREDICTABLE(i2 != (const uint16_t*) zero) {
      i2 = (const uint16_t*) ((uintptr_t) i2 + input_offset);
    }
    const uint16_t* i3 = (const uint16_t*) input[3];
    assert(i3 != NULL);
    if XNN_UNPREDICTABLE(i3 != (const uint16_t*) zero) {
      i3 = (const uint16_t*) ((uintptr_t) i3 + input_offset);
    }

    input = (const void**) ((uintptr_t) input + input_stride);

    size_t c = channels;
    const uint16_t* w = (const uint16_t*) weights;
    for (; c >= 8; c -= 8) {
      float16x8_t vacc01234567p0 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;


      const float16x8_t vi0x01234567 = vreinterpretq_f16_u16(vld1q_u16(i0)); i0 += 8;
      const float16x8_t vk0x01234567 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
      vacc01234567p0 = vfmaq_f16(vacc01234567p0, vi0x01234567, vk0x01234567);

      const float16x8_t vi1x01234567 = vreinterpretq_f16_u16(vld1q_u16(i1)); i1 += 8;
      const float16x8_t vk1x01234567 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
      vacc01234567p0 = vfmaq_f16(vacc01234567p0, vi1x01234567, vk1x01234567);

      const float16x8_t vi2x01234567 = vreinterpretq_f16_u16(vld1q_u16(i2)); i2 += 8;
      const float16x8_t vk2x01234567 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
      vacc01234567p0 = vfmaq_f16(vacc01234567p0, vi2x01234567, vk2x01234567);

      const float16x8_t vi3x01234567 = vreinterpretq_f16_u16(vld1q_u16(i3)); i3 += 8;
      const float16x8_t vk3x01234567 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
      vacc01234567p0 = vfmaq_f16(vacc01234567p0, vi3x01234567, vk3x01234567);


      float16x8_t vacc01234567 = vmaxq_f16(vacc01234567p0, vmin);
      vacc01234567 = vminq_f16(vacc01234567, vmax);

      vst1q_u16(output, vreinterpretq_u16_f16(vacc01234567)); output += 8;
    }
    if XNN_UNLIKELY(c != 0) {
      float16x8_t vacc01234567p0 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;


      const float16x8_t vi0x01234567 = vreinterpretq_f16_u16(vld1q_u16(i0));
      const float16x8_t vk0x01234567 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
      vacc01234567p0 = vfmaq_f16(vacc01234567p0, vi0x01234567, vk0x01234567);

      const float16x8_t vi1x01234567 = vreinterpretq_f16_u16(vld1q_u16(i1));
      const float16x8_t vk1x01234567 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
      vacc01234567p0 = vfmaq_f16(vacc01234567p0, vi1x01234567, vk1x01234567);

      const float16x8_t vi2x01234567 = vreinterpretq_f16_u16(vld1q_u16(i2));
      const float16x8_t vk2x01234567 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
      vacc01234567p0 = vfmaq_f16(vacc01234567p0, vi2x01234567, vk2x01234567);

      const float16x8_t vi3x01234567 = vreinterpretq_f16_u16(vld1q_u16(i3));
      const float16x8_t vk3x01234567 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8;
      vacc01234567p0 = vfmaq_f16(vacc01234567p0, vi3x01234567, vk3x01234567);


      float16x8_t vacc01234567 = vmaxq_f16(vacc01234567p0, vmin);
      vacc01234567 = vminq_f16(vacc01234567, vmax);

      float16x4_t vacc0123 = vget_low_f16(vacc01234567);
      if (c & 4) {
        vst1_u16(output, vreinterpret_u16_f16(vacc0123)); output += 4;
        vacc0123 = vget_high_f16(vacc01234567);
      }
      if (c & 2) {
        vst1_lane_u32((void*) output, vreinterpret_u32_f16(vacc0123), 0); output += 2;
        vacc0123 = vext_f16(vacc0123, vacc0123, 2);
      }
      if (c & 1) {
        vst1_lane_u16(output, vreinterpret_u16_f16(vacc0123), 0); output += 1;
      }
    }

    output = (uint16_t*) ((uintptr_t) output + output_increment);
  } while (--output_width != 0);
}