File size: 6,292 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert NR % 4 == 0
$assert BFOPT in ["BFDOT", "BFMLAL"]
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/gemm.h>
void xnn_bf16_gemm_minmax_ukernel_${MR}x${NR}c8__neonbf16_${BFOPT.lower()}(
size_t mr,
size_t nc,
size_t kc,
const void* restrict a,
size_t a_stride,
const void* restrict w_ptr,
void* restrict c,
size_t cm_stride,
size_t cn_stride,
const union xnn_bf16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(mr != 0);
assert(mr <= ${MR});
assert(nc != 0);
assert(kc != 0);
assert(kc % sizeof(bfloat16_t) == 0);
assert(a != NULL);
assert(w_ptr != NULL);
assert(c != NULL);
const bfloat16_t* a0 = (const bfloat16_t*) a;
bfloat16_t* c0 = (bfloat16_t*) c;
$for M in range(1, MR):
const bfloat16_t* a${M} = (const bfloat16_t*) ((uintptr_t) a${M-1} + a_stride);
bfloat16_t* c${M} = (bfloat16_t*) ((uintptr_t) c${M-1} + cm_stride);
$if M % 2 == 0:
if XNN_UNPREDICTABLE(mr <= ${M}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$elif M + 1 == MR:
if XNN_UNPREDICTABLE(mr != ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$else:
if XNN_UNPREDICTABLE(mr < ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
const bfloat16_t* w = (const bfloat16_t*) w_ptr;
do {
$for N in range(NR):
float32x4_t vacc0x${ABC[N]} = vcvt_f32_bf16(vld1_lane_bf16(w, vreinterpret_bf16_u16(vdup_n_u16(0)), 0)); w += 1;
$for M in range(1, MR):
$for N in range(NR):
float32x4_t vacc${M}x${ABC[N]} = vacc0x${ABC[N]};
size_t k = kc;
for (; k >= 8 * sizeof(bfloat16_t); k -= 8 * sizeof(bfloat16_t)) {
$for M in range(MR):
const bfloat16x8_t va${M} = vld1q_bf16(a${M}); a${M} += 8;
$for N in range(NR):
const bfloat16x8_t vb${ABC[N]} = vld1q_bf16(w); w += 8;
$if BFOPT == "BFDOT":
$for N in range(NR):
$for M in range(MR):
vacc${M}x${ABC[N]} = vbfdotq_f32(vacc${M}x${ABC[N]}, va${M}, vb${ABC[N]});
$elif BFOPT == "BFMLAL":
$for N in range(NR):
$for M in range(MR):
vacc${M}x${ABC[N]} = vbfmlalbq_f32(vacc${M}x${ABC[N]}, va${M}, vb${ABC[N]});
$for N in range(NR):
$for M in range(MR):
vacc${M}x${ABC[N]} = vbfmlaltq_f32(vacc${M}x${ABC[N]}, va${M}, vb${ABC[N]});
}
if XNN_UNLIKELY(k != 0) {
$for M in range(MR):
const bfloat16x8_t va${M} = vld1q_bf16(a${M}); a${M} = (const bfloat16_t*) ((uintptr_t) a${M} + k);
$for N in range(NR):
const bfloat16x8_t vb${ABC[N]} = vld1q_bf16(w); w += 8;
$for N in range(NR):
const uint16x8_t vm${ABC[N]} = vceqq_u16(vreinterpretq_u16_bf16(vb${ABC[N]}), vmovq_n_u16(0));
$for N in range(NR):
$for M in range(MR):
const bfloat16x8_t va${M}x${ABC[N]} = vreinterpretq_bf16_u16(vbicq_u16(vreinterpretq_u16_bf16(va${M}), vm${ABC[N]}));
$if BFOPT == "BFDOT":
vacc${M}x${ABC[N]} = vbfdotq_f32(vacc${M}x${ABC[N]}, va${M}x${ABC[N]}, vb${ABC[N]});
$elif BFOPT == "BFMLAL":
vacc${M}x${ABC[N]} = vbfmlalbq_f32(vacc${M}x${ABC[N]}, va${M}x${ABC[N]}, vb${ABC[N]});
vacc${M}x${ABC[N]} = vbfmlaltq_f32(vacc${M}x${ABC[N]}, va${M}x${ABC[N]}, vb${ABC[N]});
}
#if XNN_ARCH_ARM64
$for N in range(0, NR, 2):
$for M in range(MR):
const float32x4_t vacc${M}x${ABC[N:N+2]} = vpaddq_f32(vacc${M}x${ABC[N]}, vacc${M}x${ABC[N+1]});
$for N in range(0, NR, 4):
$for M in range(MR):
float32x4_t vacc${M}x${ABC[N:N+4]} = vpaddq_f32(vacc${M}x${ABC[N:N+2]}, vacc${M}x${ABC[N+2:N+4]});
#else
$for N in range(NR):
$for M in range(MR):
const float32x2_t vsum${M}x${ABC[N]} = vadd_f32(vget_low_f32(vacc${M}x${ABC[N]}), vget_high_f32(vacc${M}x${ABC[N]}));
$for N in range(0, NR, 4):
$for M in range(MR):
float32x4_t vacc${M}x${ABC[N:N+4]} = vcombine_f32(vpadd_f32(vsum${M}x${ABC[N]}, vsum${M}x${ABC[N+1]}), vpadd_f32(vsum${M}x${ABC[N+2]}, vsum${M}x${ABC[N+3]}));
#endif
const float32x4_t vmax = vld1q_dup_f32(¶ms->scalar.max);
$for N in range(0, NR, 4):
$for M in range(MR):
vacc${M}x${ABC[N:N+4]} = vminq_f32(vacc${M}x${ABC[N:N+4]}, vmax);
const float32x4_t vmin = vld1q_dup_f32(¶ms->scalar.min);
$for N in range(0, NR, 4):
$for M in range(MR):
vacc${M}x${ABC[N:N+4]} = vmaxq_f32(vacc${M}x${ABC[N:N+4]}, vmin);
$for N in range(0, NR, 4):
$for M in range(MR):
bfloat16x4_t vout${M}x${ABC[N:N+4]} = vcvt_bf16_f32(vacc${M}x${ABC[N:N+4]});
if XNN_LIKELY(nc >= ${NR}) {
$for M in range(MR):
vst1_bf16(c${M}, vout${M}x${ABC[0:4]});
$for N in range(4, NR, 4):
vst1_bf16(c${M} + ${N}, vout${M}x${ABC[N:N+4]});
c${M} = (bfloat16_t*) ((uintptr_t) c${M} + cn_stride);
$for M in range(MR):
a${M} = (const bfloat16_t*) ((uintptr_t) a${M} - kc);
nc -= ${NR};
} else {
$for LOG2N in reversed(range(NR.bit_length())):
$if NR != 1 << LOG2N:
if (nc & ${1 << LOG2N}) {
$if LOG2N >= 2:
$for N in range(0, 1 << LOG2N, 4):
$for M in range(MR):
vst1_bf16(c${M}, vout${M}x${ABC[N:N+4]}); c${M} += 4;
$for M in range(MR):
$for N in range(0, NR - (1 << LOG2N), 4):
vout${M}x${ABC[N:N+4]} = vout${M}x${ABC[N + (1 << LOG2N):N + (1 << LOG2N)+4]};
$elif LOG2N == 1:
$for M in range(MR):
vst1_lane_u32((void*) c${M}, vreinterpret_u32_bf16(vout${M}x${ABC[0:4]}), 0); c${M} += 2;
$for M in range(MR):
vout${M}x${ABC[0:4]} = vreinterpret_bf16_u16(vext_u16(vreinterpret_u16_bf16(vout${M}x${ABC[0:4]}), vreinterpret_u16_bf16(vout${M}x${ABC[0:4]}), 2));
$elif LOG2N == 0:
$for M in range(MR):
vst1_lane_bf16(c${M}, vout${M}x${ABC[0:4]}, 0);
}
nc = 0;
}
} while (nc != 0);
}
|