File size: 10,471 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

$assert ROW_TILE >= 1
$assert ACCUMULATORS >= 1
#include <assert.h>

#include <xmmintrin.h>

#include <xnnpack/dwconv.h>
#include <xnnpack/math.h>


void xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__sse_${ROW_TILE}x4${"_acc%d" % ACCUMULATORS if ACCUMULATORS > 1 else ""}(
    size_t input_height,
    size_t input_width,
    const float* input,
    const float* weights,
    const float* zero,
    float* output,
    uint32_t padding_top,
    const union xnn_f32_chw_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
  assert(input_height != 0);
  assert(input_width != 0);
  assert(input_width % sizeof(float) == 0);
  assert(padding_top >= 1);
  assert(padding_top <= 2);

  const __m128 vmask_even = _mm_load_ps((const float*) params->sse_stride2.mask_even);
  const __m128 vmask_odd  = _mm_load_ps((const float*) params->sse_stride2.mask_odd);
  const __m128 vmax = _mm_load_ps(params->sse_stride2.max);
  const __m128 vmin = _mm_load_ps(params->sse_stride2.min);

  const __m128 vbias = _mm_load1_ps(weights);
  $for R in range(5):
    $for S in range(5):
      const __m128 vk${R}${S} = _mm_load1_ps(weights + ${R*5+S+1});

  const uint32_t padding_top_less_1 = padding_top - 1;
  const size_t input_decrement = round_up_po2(input_width, 8 * sizeof(float));

  const float* i0 = zero;
  const float* i1 = (const float*) ((uintptr_t) input - ((-padding_top_less_1) & input_width));
  const float* i2 = (const float*) ((uintptr_t) i1 + input_width);
  if XNN_UNPREDICTABLE(padding_top_less_1 != 0) {
    i1 = zero;
  }
  $for M in range(3, 3 + 2 * ROW_TILE):
    const float* i${M} = (const float*) ((uintptr_t) i${M-1} + input_width);

  $if ROW_TILE > 1:
    const size_t output_width = round_down_po2((input_width + (2 /* padding */ - 3 /* kernel size */ + 2 /* subsampling */) * sizeof(float)) / 2, sizeof(float));

  float* o0 = output;
  $for M in range(1, ROW_TILE):
    float* o${M} = (float*) ((uintptr_t) o${M-1} + output_width);

  size_t padded_input_height = input_height + (padding_top_less_1 + 1) + 2 /* padding bottom */;
  size_t output_height = (padded_input_height - 5 /* kernel size */ + 2 /* subsampling */) / 2;
  do {
    $for M in range(3, 3 + 2 * ROW_TILE):
      if XNN_UNPREDICTABLE(padded_input_height < ${3 + M}) {
        i${M} = zero;
        $if M % 2 == 0 and M <= 2 * ROW_TILE + 1:
          o${M // 2 - 1} = o${M // 2 - 2};
      }

    $for M in range(3 + 2 * ROW_TILE):
      __m128 vi${M}x6024 = _mm_setzero_ps();

    $for M in range(3 + 2 * ROW_TILE):
      __m128 vi${M}x7135 = _mm_setzero_ps();

    $for M in range(3 + 2 * ROW_TILE):
      const __m128 vi${M}x89AB = _mm_loadu_ps(i${M});
      const __m128 vi${M}xCDEF = _mm_loadu_ps(i${M} + 4);
      i${M} += 8;

    $for M in range(3 + 2 * ROW_TILE):
      __m128 vi${M}x8ACE = _mm_shuffle_ps(vi${M}x89AB, vi${M}xCDEF, _MM_SHUFFLE(2, 0, 2, 0));
      __m128 vi${M}x9BDF = _mm_shuffle_ps(vi${M}x89AB, vi${M}xCDEF, _MM_SHUFFLE(3, 1, 3, 1));

    size_t w = input_width;
    for (; w > 8 * sizeof(float); w -= 8 * sizeof(float)) {
      $for K in range(5):
        $for M in range(ROW_TILE):
          $if K == 0:
            __m128 vo${M}p0 = _mm_add_ps(vbias, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}2));
          $elif K < ACCUMULATORS:
            __m128 vo${M}p${K} = _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}2);
          $else:
            vo${M}p${K % ACCUMULATORS} = _mm_add_ps(vo${M}p${K % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}2));

      $for M in range(3 + 2 * ROW_TILE):
        const __m128 vi${M}xE8AC = _mm_shuffle_ps(vi${M}x8ACE, vi${M}x8ACE, _MM_SHUFFLE(2, 1, 0, 3));

      $for K in range(5):
        $for M in range(ROW_TILE):
          vo${M}p${(K+5) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+5) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x9BDF, vk${K}3));

      $for M in range(3 + 2 * ROW_TILE):
        const __m128 vi${M}x68AC = _mm_move_ss(vi${M}xE8AC, vi${M}x6024);
        vi${M}x6024 = vi${M}xE8AC;

      $for M in range(3 + 2 * ROW_TILE):
        const __m128 vi${M}xF9BD = _mm_shuffle_ps(vi${M}x9BDF, vi${M}x9BDF, _MM_SHUFFLE(2, 1, 0, 3));

      $for K in range(5):
        $for M in range(ROW_TILE):
          vo${M}p${(K+10) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+10) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x68AC, vk${K}0));

      $for M in range(3 + 2 * ROW_TILE):
        const __m128 vi${M}xGHIJ = _mm_loadu_ps(i${M});
        const __m128 vi${M}xKLMN = _mm_loadu_ps(i${M} + 4);
        i${M} += 8;

      $for M in range(3 + 2 * ROW_TILE):
        const __m128 vi${M}x79BD = _mm_move_ss(vi${M}xF9BD, vi${M}x7135);
        vi${M}x7135 = vi${M}xF9BD;

      $for M in range(3 + 2 * ROW_TILE):
        const __m128 vi${M}xGIKM = _mm_shuffle_ps(vi${M}xGHIJ, vi${M}xKLMN, _MM_SHUFFLE(2, 0, 2, 0));
        const __m128 vi${M}xHJLN = _mm_shuffle_ps(vi${M}xGHIJ, vi${M}xKLMN, _MM_SHUFFLE(3, 1, 3, 1));
        vi${M}x9BDF = vi${M}xHJLN;

      $for K in range(5):
        $for M in range(ROW_TILE):
          vo${M}p${(K+15) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+15) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x79BD, vk${K}1));

      $for M in range(3 + 2 * ROW_TILE):
        const __m128 vi${M}xGACE = _mm_move_ss(vi${M}x8ACE, vi${M}xGIKM);
        vi${M}x8ACE = vi${M}xGIKM;

      $for M in range(3 + 2 * ROW_TILE):
        const __m128 vi${M}xACEG = _mm_shuffle_ps(vi${M}xGACE, vi${M}xGACE, _MM_SHUFFLE(0, 3, 2, 1));

      $for K in range(5):
        $for M in range(ROW_TILE):
          vo${M}p${(K+20) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+20) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}xACEG, vk${K}4));

      $if ACCUMULATORS > 1:
        $ACC_SLICE = 1
        $while ACC_SLICE < ACCUMULATORS:
          $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
            $if A + ACC_SLICE < ACCUMULATORS:
              $for M in range(ROW_TILE):
                vo${M}p${A} = _mm_add_ps(vo${M}p${A}, vo${M}p${A + ACC_SLICE});
          $ACC_SLICE *= 2

      $for M in range(ROW_TILE):
        __m128 vo${M} = _mm_max_ps(vo${M}p0, vmin);

      $for M in range(ROW_TILE):
        vo${M} = _mm_min_ps(vo${M}, vmax);

      $for M in reversed(range(ROW_TILE)):
        _mm_storeu_ps(o${M}, vo${M});
        o${M} += 4;
    }
    // Last block has 1-8 pixels to process.
    assert(w <= 8 * sizeof(float));
    assert(w >= 1 * sizeof(float));
    {
      $for M in range(3 + 2 * ROW_TILE):
        vi${M}x8ACE = _mm_and_ps(vi${M}x8ACE, vmask_even);
        vi${M}x9BDF = _mm_and_ps(vi${M}x9BDF, vmask_odd);

      $for K in range(5):
        $for M in range(ROW_TILE):
          $if K == 0:
            __m128 vo${M}p0 = _mm_add_ps(vbias, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}2));
          $elif K < ACCUMULATORS:
            __m128 vo${M}p${K} = _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}2);
          $else:
            vo${M}p${K % ACCUMULATORS} = _mm_add_ps(vo${M}p${K % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}2));

      $for M in range(3 + 2 * ROW_TILE):
        const __m128 vi${M}xE8AC = _mm_shuffle_ps(vi${M}x8ACE, vi${M}x8ACE, _MM_SHUFFLE(2, 1, 0, 3));

      $for K in range(5):
        $for M in range(ROW_TILE):
          vo${M}p${(K+5) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+5) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x9BDF, vk${K}3));

      $for M in range(3 + 2 * ROW_TILE):
        const __m128 vi${M}x68AC = _mm_move_ss(vi${M}xE8AC, vi${M}x6024);

      $for M in range(3 + 2 * ROW_TILE):
        const __m128 vi${M}xF9BD = _mm_shuffle_ps(vi${M}x9BDF, vi${M}x9BDF, _MM_SHUFFLE(2, 1, 0, 3));

      $for K in range(5):
        $for M in range(ROW_TILE):
          vo${M}p${(K+10) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+10) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x68AC, vk${K}0));

      $for M in range(3 + 2 * ROW_TILE):
        const __m128 vi${M}x79BD = _mm_move_ss(vi${M}xF9BD, vi${M}x7135);

      $for K in range(5):
        $for M in range(ROW_TILE):
          vo${M}p${(K+15) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+15) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x79BD, vk${K}1));

      const __m128 vzero = _mm_setzero_ps();
      $for M in range(3 + 2 * ROW_TILE):
        const __m128 vi${M}xGACE = _mm_move_ss(vi${M}x8ACE, vzero);

      $for M in range(3 + 2 * ROW_TILE):
        const __m128 vi${M}xACEG = _mm_shuffle_ps(vi${M}xGACE, vi${M}xGACE, _MM_SHUFFLE(0, 3, 2, 1));

      $for K in range(5):
        $for M in range(ROW_TILE):
          vo${M}p${(K+20) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+20) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}xACEG, vk${K}4));

      $if ACCUMULATORS > 1:
        $ACC_SLICE = 1
        $while ACC_SLICE < ACCUMULATORS:
          $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
            $if A + ACC_SLICE < ACCUMULATORS:
              $for M in range(ROW_TILE):
                vo${M}p${A} = _mm_add_ps(vo${M}p${A}, vo${M}p${A + ACC_SLICE});
          $ACC_SLICE *= 2

      $for M in range(ROW_TILE):
        __m128 vo${M} = _mm_max_ps(vo${M}p0, vmin);

      $for M in range(ROW_TILE):
        vo${M} = _mm_min_ps(vo${M}, vmax);

      size_t w_tmp = (w + 1 * sizeof(float)) / (2 * sizeof(float));
      if XNN_LIKELY(w_tmp >= 4) {
        $for M in reversed(range(ROW_TILE)):
          _mm_storeu_ps(o${M}, vo${M});
          o${M} += 4;
      } else {
        if (w_tmp & 2) {
          $for M in reversed(range(ROW_TILE)):
            _mm_storel_pi((__m64*) o${M}, vo${M});
            o${M} += 2;

          $for M in range(ROW_TILE):
            vo${M} = _mm_movehl_ps(vo${M}, vo${M});
        }
        if (w_tmp & 1) {
          $for M in reversed(range(ROW_TILE)):
            _mm_store_ss(o${M}, vo${M});
            o${M} += 1;
        }
      }
    }

    i0 = (const float*) ((uintptr_t) i${2 * ROW_TILE} - input_decrement);
    i1 = (const float*) ((uintptr_t) i${2 * ROW_TILE + 1} - input_decrement);
    i2 = (const float*) ((uintptr_t) i${2 * ROW_TILE + 2} - input_decrement);
    $for M in range(3, 3 + 2 * ROW_TILE):
      i${M} = (const float*) ((uintptr_t) i${M-1} + input_width);

    $if ROW_TILE > 1:
      o0 = o${ROW_TILE - 1};
      $for M in range(1, ROW_TILE):
        o${M} = (float*) ((uintptr_t) o${M-1} + output_width);

    $if ROW_TILE > 1:
      output_height = doz(output_height, ${ROW_TILE});
      padded_input_height = doz(padded_input_height, ${ROW_TILE * 2});
    $else:
      output_height -= 1;
      padded_input_height -= 2;
  } while (output_height != 0);
}