File size: 6,220 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

$assert BATCH_TILE % 8 == 0
$assert BATCH_TILE >= 8
$assert DIV_ALGO in ["div", "rcp"]
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$SIMD_TILE = BATCH_TILE // 8
#include <assert.h>

#include <immintrin.h>

#include <xnnpack/common.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/vunary.h>


void xnn_f16_vsigmoid_ukernel__avx2_rr1_p2_${DIV_ALGO}_x${BATCH_TILE}(
    size_t batch,
    const void* input,
    void* output,
    const union xnn_f16_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)])
{
  assert(batch != 0);
  assert(batch % sizeof(uint16_t) == 0);
  assert(input != NULL);
  assert(output != NULL);

  const __m256 vsign_mask = _mm256_load_ps(params->avx2_rr1_p2.sign_mask);
  const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p2.magic_bias);
  const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p2.log2e);
  const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p2.minus_ln2);
  const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p2.c2);
  const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p2.c1);
  const __m256 vone = _mm256_load_ps(params->avx2_rr1_p2.one);
  const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p2.denorm_cutoff);

  const uint16_t* i = (const uint16_t*) input;
  uint16_t* o = (uint16_t*) output;
  $if BATCH_TILE > 8:
    for (; batch >= ${BATCH_TILE} * sizeof(uint16_t); batch -= ${BATCH_TILE} * sizeof(uint16_t)) {
      const __m256 vx${ABC[0]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
      $for N in range(1, SIMD_TILE):
        const __m256 vx${ABC[N]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + ${N * 8})));
      i += ${BATCH_TILE};

      $for N in range(SIMD_TILE):
        const __m256 vz${ABC[N]} = _mm256_or_ps(vx${ABC[N]}, vsign_mask);

      $for N in range(SIMD_TILE):
        __m256 vn${ABC[N]} = _mm256_fmadd_ps(vz${ABC[N]}, vlog2e, vmagic_bias);

      $for N in range(SIMD_TILE):
        const __m256 vs${ABC[N]} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${ABC[N]}), 23));

      $for N in range(SIMD_TILE):
        vn${ABC[N]} = _mm256_sub_ps(vn${ABC[N]}, vmagic_bias);

      $for N in range(SIMD_TILE):
        __m256 vt${ABC[N]} = _mm256_fmadd_ps(vn${ABC[N]}, vminus_ln2, vz${ABC[N]});

      $for N in range(SIMD_TILE):
        const __m256 vp${ABC[N]} = _mm256_fmadd_ps(vc2, vt${ABC[N]}, vc1);

      $for N in range(SIMD_TILE):
        vt${ABC[N]} = _mm256_mul_ps(vt${ABC[N]}, vs${ABC[N]});

      $for N in range(SIMD_TILE):
        const __m256 ve${ABC[N]} = _mm256_fmadd_ps(vt${ABC[N]}, vp${ABC[N]}, vs${ABC[N]});

      $for N in range(SIMD_TILE):
        const __m256 vd${ABC[N]} = _mm256_add_ps(ve${ABC[N]}, vone);

      $if DIV_ALGO == "div":
        $for N in range(SIMD_TILE):
          __m256 vf${ABC[N]} = _mm256_div_ps(ve${ABC[N]}, vd${ABC[N]});
      $else:
        $for N in range(SIMD_TILE):
          const __m256 vr${ABC[N]} = _mm256_rcp_ps(vd${ABC[N]});

        $for N in range(SIMD_TILE):
          __m256 vf${ABC[N]} = _mm256_mul_ps(ve${ABC[N]}, vr${ABC[N]});

      $for N in range(SIMD_TILE):
        vf${ABC[N]} = _mm256_andnot_ps(_mm256_cmp_ps(vz${ABC[N]}, vdenorm_cutoff, _CMP_LT_OS), vf${ABC[N]});

      $for N in range(SIMD_TILE):
        vf${ABC[N]} = _mm256_blendv_ps(_mm256_sub_ps(vone, vf${ABC[N]}), vf${ABC[N]}, vx${ABC[N]});

      _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf${ABC[0]}, _MM_FROUND_TO_NEAREST_INT));
      $for N in range(1, SIMD_TILE):
        _mm_storeu_si128((__m128i*) (o + ${N * 8}), _mm256_cvtps_ph(vf${ABC[N]}, _MM_FROUND_TO_NEAREST_INT));
      o += ${BATCH_TILE};
    }
  for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) {
    const __m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));
    i += 8;

    const __m256 vz = _mm256_or_ps(vx, vsign_mask);

    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
    vn = _mm256_sub_ps(vn, vmagic_bias);

    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);

    const __m256 vp = _mm256_fmadd_ps(vc2, vt, vc1);
    vt = _mm256_mul_ps(vt, vs);
    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);

    const __m256 vd = _mm256_add_ps(ve, vone);
    $if DIV_ALGO == "div":
      __m256 vf = _mm256_div_ps(ve, vd);
    $else:
      const __m256 vr = _mm256_rcp_ps(vd);
      __m256 vf = _mm256_mul_ps(ve, vr);

    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);

    _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf, _MM_FROUND_TO_NEAREST_INT));
    o += 8;
  }
  if XNN_UNLIKELY(batch != 0) {
    assert(batch >= 1 * sizeof(uint16_t));
    assert(batch <= 7 * sizeof(uint16_t));
    const __m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i));

    const __m256 vz = _mm256_or_ps(vx, vsign_mask);

    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
    vn = _mm256_sub_ps(vn, vmagic_bias);

    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);

    const __m256 vp = _mm256_fmadd_ps(vc2, vt, vc1);
    vt = _mm256_mul_ps(vt, vs);
    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);

    const __m256 vd = _mm256_add_ps(ve, vone);
    $if DIV_ALGO == "div":
      __m256 vf = _mm256_div_ps(ve, vd);
    $else:
      const __m256 vr = _mm256_rcp_ps(vd);
      __m256 vf = _mm256_mul_ps(ve, vr);

    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);

    __m128i vh = _mm256_cvtps_ph(vf, _MM_FROUND_TO_NEAREST_INT);
    if (batch & (4 * sizeof(uint16_t))) {
      _mm_storel_epi64((__m128i*) o, vh);
      vh = _mm_unpackhi_epi64(vh, vh);
      o += 4;
    }
    if (batch & (2 * sizeof(uint16_t))) {
      _mm_storeu_si32(o, vh);
      vh = _mm_srli_epi64(vh, 32);
      o += 2;
    }
    if (batch & (1 * sizeof(uint16_t))) {
      *o = (uint16_t) _mm_extract_epi16(vh, 0);
    }
  }
}