File size: 6,199 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert CHANNEL_TILE % 8 == 0
$assert CHANNEL_TILE >= 8
$assert ROW_TILE >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/math.h>
#include <xnnpack/vmulcaddc.h>
void xnn_f16_vmulcaddc_minmax_ukernel_c${CHANNEL_TILE}__fma3_${ROW_TILE}x(
size_t rows,
size_t channels,
const void* restrict input,
size_t input_stride,
const void* restrict weights,
void* restrict output,
size_t output_stride,
const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(rows != 0);
assert(channels != 0);
assert(channels % sizeof(uint16_t) == 0);
const uint16_t* i0 = (const uint16_t*) input;
uint16_t* o0 = (uint16_t*) output;
$for M in range(1, ROW_TILE):
const uint16_t* i${M} = (const uint16_t*) ((uintptr_t) i${M-1} + input_stride);
uint16_t* o${M} = (uint16_t*) ((uintptr_t) o${M-1} + output_stride);
const size_t input_increment = input_stride * ${ROW_TILE} - channels;
const size_t output_increment = output_stride * ${ROW_TILE} - channels;
const __m256 vmin = _mm256_load_ps(params->avx.min);
const __m256 vmax = _mm256_load_ps(params->avx.max);
do {
$for M in range(1, ROW_TILE):
$if M % 2 == 0:
if XNN_UNPREDICTABLE(rows <= ${M}) {
i${M} = i${M-1};
o${M} = o${M-1};
}
$else:
if XNN_UNPREDICTABLE(rows < ${M+1}) {
i${M} = i${M-1};
o${M} = o${M-1};
}
const uint16_t* w = (const uint16_t*) weights;
size_t c = channels;
$if CHANNEL_TILE > 8:
for (; c >= ${CHANNEL_TILE} * sizeof(uint16_t); c -= ${CHANNEL_TILE} * sizeof(uint16_t)) {
const __m256 vscale${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) w));
$for C in range(8, CHANNEL_TILE, 8):
const __m256 vscale${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + ${C})));
$for M in range(ROW_TILE):
__m256 vacc${M}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M}));
$for C in range(8, CHANNEL_TILE, 8):
__m256 vacc${M}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${M} + ${C})));
i${M} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 8):
const __m256 vbias${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + ${CHANNEL_TILE + C})));
w += ${2 * CHANNEL_TILE};
$for M in range(ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
vacc${M}x${ABC[C:C+8]} = _mm256_fmadd_ps(vacc${M}x${ABC[C:C+8]}, vscale${ABC[C:C+8]}, vbias${ABC[C:C+8]});
$for M in range(ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
vacc${M}x${ABC[C:C+8]} = _mm256_max_ps(vacc${M}x${ABC[C:C+8]}, vmin);
$for M in range(ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
vacc${M}x${ABC[C:C+8]} = _mm256_min_ps(vacc${M}x${ABC[C:C+8]}, vmax);
$for M in range(ROW_TILE):
_mm_storeu_si128((__m128i*) o${M}, _mm256_cvtps_ph(vacc${M}x${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT));
$for C in range(8, CHANNEL_TILE, 8):
_mm_storeu_si128((__m128i*) (o${M} + ${C}), _mm256_cvtps_ph(vacc${M}x${ABC[C:C+8]}, _MM_FROUND_TO_NEAREST_INT));
o${M} += ${CHANNEL_TILE};
}
for (; c >= 8 * sizeof(uint16_t); c -= 8 * sizeof(uint16_t)) {
const __m256 vscale = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) w));
$for M in range(ROW_TILE):
__m256 vacc${M} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M}));
i${M} += 8;
const __m256 vbias = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + ${CHANNEL_TILE})));
w += ${8 if CHANNEL_TILE > 8 else CHANNEL_TILE * 2};
$for M in range(ROW_TILE):
vacc${M} = _mm256_fmadd_ps(vacc${M}, vscale, vbias);
$for M in range(ROW_TILE):
vacc${M} = _mm256_max_ps(vacc${M}, vmin);
$for M in range(ROW_TILE):
vacc${M} = _mm256_min_ps(vacc${M}, vmax);
$for M in range(ROW_TILE):
_mm_storeu_si128((__m128i*) o${M}, _mm256_cvtps_ph(vacc${M}, _MM_FROUND_TO_NEAREST_INT));
o${M} += 8;
}
if XNN_UNLIKELY(c != 0) {
const __m256 vscale = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) w));
$for M in range(ROW_TILE):
__m256 vacc${M} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M}));
i${M} = (const uint16_t*) ((uintptr_t) i${M} + c);
const __m256 vbias = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + ${CHANNEL_TILE})));
$for M in range(ROW_TILE):
vacc${M} = _mm256_fmadd_ps(vacc${M}, vscale, vbias);
$for M in range(ROW_TILE):
vacc${M} = _mm256_max_ps(vacc${M}, vmin);
$for M in range(ROW_TILE):
vacc${M} = _mm256_min_ps(vacc${M}, vmax);
$for M in range(ROW_TILE):
__m128i vh${M} = _mm256_cvtps_ph(vacc${M}, _MM_FROUND_TO_NEAREST_INT);
if (c & (4 * sizeof(uint16_t))) {
$for M in range(ROW_TILE):
_mm_storel_epi64((__m128i*) o${M}, vh${M});
$for M in range(ROW_TILE):
vh${M} = _mm_unpackhi_epi64(vh${M}, vh${M});
$for M in range(ROW_TILE):
o${M} += 4;
}
if (c & (2 * sizeof(uint16_t))) {
$for M in range(ROW_TILE):
_mm_storeu_si32(o${M}, vh${M});
$for M in range(ROW_TILE):
vh${M} = _mm_srli_epi64(vh${M}, 32);
$for M in range(ROW_TILE):
o${M} += 2;
}
if (c & (1 * sizeof(uint16_t))) {
$for M in range(ROW_TILE):
*o${M} = (uint16_t) _mm_extract_epi16(vh${M}, 0);
$for M in range(ROW_TILE):
o${M} += 1;
}
}
$for M in range(ROW_TILE):
i${M} = (const uint16_t*) ((uintptr_t) i${M} + input_increment);
o${M} = (uint16_t*) ((uintptr_t) o${M} + output_increment);
rows = doz(rows, ${ROW_TILE});
} while (rows != 0);
}
|