File size: 6,483 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

$assert BATCH_TILE % 8 == 0
$assert BATCH_TILE >= 8
$SIMD_TILE = BATCH_TILE // 8
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>

#include <arm_neon.h>

#include <xnnpack/common.h>
#include <xnnpack/raddstoreexpminusmax.h>


void xnn_f16_raddstoreexpminusmax_ukernel__neonfp16arith_rr2_p2_x${BATCH_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
    size_t batch,
    const void* input,
    const void* max,
    void* output,
    void* sum,
    const union xnn_f16_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
  assert(batch != 0);
  assert(batch % sizeof(uint16_t) == 0);
  assert(input != NULL);
  assert(max != NULL);
  assert(output != NULL);
  assert(sum != NULL);

  const float16x8_t vi_max = vreinterpretq_f16_u16(vld1q_dup_u16(max));
  const float16x8_t vlog2e = vreinterpretq_f16_u16(vld1q_dup_u16(&params->fp16arith_rr2_p2.log2e));
  const float16x8_t vmagic_bias = vreinterpretq_f16_u16(vld1q_dup_u16(&params->fp16arith_rr2_p2.magic_bias));
  const float16x8_t vminus_ln2_hi = vreinterpretq_f16_u16(vld1q_dup_u16(&params->fp16arith_rr2_p2.minus_ln2_hi));
  const float16x8_t vminus_ln2_lo = vreinterpretq_f16_u16(vld1q_dup_u16(&params->fp16arith_rr2_p2.minus_ln2_lo));
  const float16x8_t vc2 = vreinterpretq_f16_u16(vld1q_dup_u16(&params->fp16arith_rr2_p2.c2));
  const float16x8_t vc1 = vreinterpretq_f16_u16(vld1q_dup_u16(&params->fp16arith_rr2_p2.c1));
  const float16x8_t vdenorm_cutoff = vreinterpretq_f16_u16(vld1q_dup_u16(&params->fp16arith_rr2_p2.denorm_cutoff));

  const uint16_t* i = (const uint16_t*) input;
  uint16_t* o = (uint16_t*) output;
  $if BATCH_TILE > 8:
    $for K in range(ACCUMULATORS):
      float16x8_t vacc${K} = vreinterpretq_f16_u16(vmovq_n_u16(0));
    for (; batch >= ${BATCH_TILE} * sizeof(uint16_t); batch -= ${BATCH_TILE} * sizeof(uint16_t)) {
      $for N in range(SIMD_TILE):
        const float16x8_t vi${ABC[N]} = vreinterpretq_f16_u16(vld1q_u16(i)); i += 8;

      $for N in range(SIMD_TILE):
        const float16x8_t vx${ABC[N]} = vsubq_f16(vi${ABC[N]}, vi_max);

      $for N in range(SIMD_TILE):
        float16x8_t vn${ABC[N]} = vfmaq_f16(vmagic_bias, vx${ABC[N]}, vlog2e);

      $for N in range(SIMD_TILE):
        const float16x8_t vs${ABC[N]} = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn${ABC[N]}), 10));

      $for N in range(SIMD_TILE):
        vn${ABC[N]} = vsubq_f16(vn${ABC[N]}, vmagic_bias);

      $for N in range(SIMD_TILE):
        float16x8_t vt${ABC[N]} = vfmaq_f16(vx${ABC[N]}, vn${ABC[N]}, vminus_ln2_hi);

      $for N in range(SIMD_TILE):
        vt${ABC[N]} = vfmaq_f16(vt${ABC[N]}, vn${ABC[N]}, vminus_ln2_lo);

      $for N in range(SIMD_TILE):
        const float16x8_t vp${ABC[N]} = vfmaq_f16(vc1, vc2, vt${ABC[N]});

      $for N in range(SIMD_TILE):
        vt${ABC[N]} = vmulq_f16(vt${ABC[N]}, vs${ABC[N]});

      $for N in range(SIMD_TILE):
        float16x8_t vf${ABC[N]} = vfmaq_f16(vs${ABC[N]}, vp${ABC[N]}, vt${ABC[N]});
        const uint16x8_t vm${ABC[N]} = vcltq_f16(vx${ABC[N]}, vdenorm_cutoff);

      $for N in range(SIMD_TILE):
        vf${ABC[N]} = vreinterpretq_f16_u16(vbicq_u16(vreinterpretq_u16_f16(vf${ABC[N]}), vm${ABC[N]}));

      $for N in range(SIMD_TILE):
        vst1q_u16(o, vreinterpretq_u16_f16(vf${ABC[N]})); o += 8;

      $for N in range(SIMD_TILE):
        vacc${N % ACCUMULATORS} = vaddq_f16(vacc${N % ACCUMULATORS}, vf${ABC[N]});
    }
    $if ACCUMULATORS > 1:
      $ACC_SLICE = 1
      $while ACC_SLICE < ACCUMULATORS:
        $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
          $if A + ACC_SLICE < ACCUMULATORS:
            vacc${A} = vaddq_f16(vacc${A}, vacc${A + ACC_SLICE});
        $ACC_SLICE *= 2

    float16x8_t vacc = vacc0;
  $else:
    float16x8_t vacc = vreinterpretq_f16_u16(vmovq_n_u16(0));
  for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) {
    const float16x8_t vi = vreinterpretq_f16_u16(vld1q_u16(i)); i += 8;

    const float16x8_t vx = vsubq_f16(vi, vi_max);

    float16x8_t vn = vfmaq_f16(vmagic_bias, vx, vlog2e);
    const float16x8_t vs = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn), 10));
    vn = vsubq_f16(vn, vmagic_bias);

    float16x8_t vt = vfmaq_f16(vx, vn, vminus_ln2_hi);
    vt = vfmaq_f16(vt, vn, vminus_ln2_lo);

    const float16x8_t vp = vfmaq_f16(vc1, vc2, vt);
    vt = vmulq_f16(vt, vs);

    float16x8_t vf = vfmaq_f16(vs, vp, vt);
    const uint16x8_t vm = vcltq_f16(vx, vdenorm_cutoff);
    vf = vreinterpretq_f16_u16(vbicq_u16(vreinterpretq_u16_f16(vf), vm));

    vst1q_u16(o, vreinterpretq_u16_f16(vf)); o += 8;

    vacc = vaddq_f16(vacc, vf);
  }
  float16x4_t vacc_lo = vadd_f16(vget_low_f16(vacc), vget_high_f16(vacc));
  if (batch != 0) {
    assert(batch >= 1 * sizeof(uint16_t));
    assert(batch <= 7 * sizeof(uint16_t));
    const float16x8_t vi = vreinterpretq_f16_u16(vld1q_u16(i));

    const float16x8_t vx = vsubq_f16(vi, vi_max);

    float16x8_t vn = vfmaq_f16(vmagic_bias, vx, vlog2e);
    const float16x8_t vs = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn), 10));
    vn = vsubq_f16(vn, vmagic_bias);

    float16x8_t vt = vfmaq_f16(vx, vn, vminus_ln2_hi);
    vt = vfmaq_f16(vt, vn, vminus_ln2_lo);

    const float16x8_t vp = vfmaq_f16(vc1, vc2, vt);
    vt = vmulq_f16(vt, vs);

    float16x8_t vf = vfmaq_f16(vs, vp, vt);
    const uint16x8_t vm = vcltq_f16(vx, vdenorm_cutoff);
    vf = vreinterpretq_f16_u16(vbicq_u16(vreinterpretq_u16_f16(vf), vm));

    float16x4_t vf_lo = vget_low_f16(vf);
    if (batch & (4 * sizeof(uint16_t))) {
      vst1_u16(o, vreinterpret_u16_f16(vf_lo)); o += 4;
      vacc_lo = vadd_f16(vacc_lo, vf_lo);
      vf_lo = vget_high_f16(vf);
    }
    if (batch & (2 * sizeof(uint16_t))) {
      vst1_lane_u32((void*) o, vreinterpret_u32_f16(vf_lo), 0); o += 2;
      vacc_lo = vadd_f16(vacc_lo, vreinterpret_f16_u64(vshl_n_u64(vreinterpret_u64_f16(vf_lo), 32)));
      vf_lo = vext_f16(vf_lo, vf_lo, 2);
    }
    if (batch & (1 * sizeof(uint16_t))) {
      vst1_lane_u16(o, vreinterpret_u16_f16(vf_lo), 0);
      vacc_lo = vadd_f16(vacc_lo, vreinterpret_f16_u64(vshl_n_u64(vreinterpret_u64_f16(vf_lo), 48)));
    }
  }
  vacc_lo = vpadd_f16(vacc_lo, vacc_lo);
  vacc_lo = vpadd_f16(vacc_lo, vacc_lo);
  vst1_lane_u16(sum, vreinterpret_u16_f16(vacc_lo), 0);
}