File size: 7,255 Bytes
8b7c501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.

$assert CHANNEL_TILE % 8 == 0
$assert KERNEL_TILE >= 2
$assert ACCUMULATORS >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>

#include <immintrin.h>

#include <xnnpack/dwconv.h>
#include <xnnpack/intrinsics-polyfill.h>


void xnn_f16_dwconv_minmax_ukernel_${KERNEL_TILE}p${CHANNEL_TILE}c__fma3${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
    size_t channels,
    size_t output_width,
    const void** input,
    const void* weights,
    void* output,
    intptr_t input_stride,
    size_t output_increment,
    size_t input_offset,
    const void* zero,
    const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
  assert(channels != 0);
  assert(output_width != 0);

  const __m256 vmax = _mm256_load_ps(params->avx.max);
  const __m256 vmin = _mm256_load_ps(params->avx.min);

  uint16_t* o = (uint16_t*) output;
  do {
    $for K in range(KERNEL_TILE):
      const uint16_t* i${K} = input[${K}];
      assert(i${K} != NULL);
      if XNN_UNPREDICTABLE(i${K} != zero) {
        i${K} = (const uint16_t*) ((uintptr_t) i${K} + input_offset);
      }
    input = (const void**) ((uintptr_t) input + input_stride);

    size_t c = channels;
    const uint16_t* w = weights;
    for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
      __m256 vacc${ABC[0:8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w));
      $for C in range(8, CHANNEL_TILE, 8):
        __m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${C})));

      $for K in range(KERNEL_TILE):

        const __m256 vi${K}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K}));
        $for C in range(8, CHANNEL_TILE, 8):
          const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K} + ${C})));
        i${K} += ${CHANNEL_TILE};

        $for C in range(0, CHANNEL_TILE, 8):
          const __m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_TILE + C})));
        $for C in range(0, CHANNEL_TILE, 8):
          $if 1 <= K < ACCUMULATORS:
            __m256 vacc${ABC[C:C+8]}p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT));
          $else:
            vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT));

      w += ${(KERNEL_TILE + 1) * CHANNEL_TILE};

      $if ACCUMULATORS > 1:
        // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0
        $ACC_SLICE = 1
        $while ACC_SLICE < ACCUMULATORS:
          $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
            $if A + ACC_SLICE < ACCUMULATORS:
              $for C in range(0, CHANNEL_TILE, 8):
                vacc${ABC[C:C+8]}p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT));
          $ACC_SLICE *= 2

      $for C in range(0, CHANNEL_TILE, 8):
        __m256 vacc${ABC[C:C+8]} = _mm256_max_ps(vacc${ABC[C:C+8]}p0, vmin);
      $for C in range(0, CHANNEL_TILE, 8):
        vacc${ABC[C:C+8]} = _mm256_min_ps(vacc${ABC[C:C+8]}, vmax);

      _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vacc${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT));
      $for C in range(8, CHANNEL_TILE, 8):
        _mm_storeu_si128((__m128i*) (o + ${C}), _mm256_cvtps_ph(vacc${ABC[C:C+8]}, _MM_FROUND_TO_NEAREST_INT));
      o += ${CHANNEL_TILE};
    }
    $if CHANNEL_TILE > 8:
      for (; c >= 8; c -= 8) {
        __m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w));
        $for K in range(KERNEL_TILE):

          const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K}));
          i${K} += 8;

          const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_TILE})));
          $if 1 <= K < ACCUMULATORS:
            __m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT));
          $else:
            vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT));

        w += 8;

        $if ACCUMULATORS > 1:
          // Add up all accumulators to vacc${ABC[0:8]}p0
          $ACC_SLICE = 1
          $while ACC_SLICE < ACCUMULATORS:
            $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
              $if A + ACC_SLICE < ACCUMULATORS:
                vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT));
            $ACC_SLICE *= 2

        __m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin);
        vacc01234567 = _mm256_min_ps(vacc01234567, vmax);

        _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vacc01234567, _MM_FROUND_TO_NEAREST_INT));
        o += 8;
      }
    if XNN_UNLIKELY(c != 0) {
      assert(c >= 1);
      assert(c <= 7);

      __m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w));
      $for K in range(KERNEL_TILE):

        const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K}));

        const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_TILE})));
        $if 1 <= K < ACCUMULATORS:
          __m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT));
        $else:
          vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT));

      $if ACCUMULATORS > 1:
        // Add up all accumulators to vacc${ABC[0:8]}p0
        $ACC_SLICE = 1
        $while ACC_SLICE < ACCUMULATORS:
          $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
            $if A + ACC_SLICE < ACCUMULATORS:
              vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT));
          $ACC_SLICE *= 2

      __m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin);
      vacc01234567 = _mm256_min_ps(vacc01234567, vmax);

      __m128i vh01234567 = _mm256_cvtps_ph(vacc01234567, _MM_FROUND_TO_NEAREST_INT);
      if (c & 4) {
        _mm_storel_epi64((__m128i*) o, vh01234567);
        vh01234567 = _mm_unpackhi_epi64(vh01234567, vh01234567);
        o += 4;
      }
      if (c & 2) {
        _mm_storeu_si32(o, vh01234567);
        vh01234567 = _mm_srli_epi64(vh01234567, 32);
        o += 2;
      }
      if (c & 1) {
        *o = (uint16_t) _mm_extract_epi16(vh01234567, 0);
        o += 1;
      }
    }

    o = (uint16_t*) ((uintptr_t) o + output_increment);
  } while (--output_width != 0);
}