--- language: - ar license: apache-2.0 tags: - ar - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ar metrics: - name: Test WER type: wer value: 47.54 - name: Test CER type: cer value: 17.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 93.72 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ar metrics: - name: Test WER type: wer value: 92.49 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AR dataset. It achieves the following results on the evaluation set: - Loss: 0.4502 - Wer: 0.4783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.7972 | 0.43 | 500 | 5.1401 | 1.0 | | 3.3241 | 0.86 | 1000 | 3.3220 | 1.0 | | 3.1432 | 1.29 | 1500 | 3.0806 | 0.9999 | | 2.9297 | 1.72 | 2000 | 2.5678 | 1.0057 | | 2.2593 | 2.14 | 2500 | 1.1068 | 0.8218 | | 2.0504 | 2.57 | 3000 | 0.7878 | 0.7114 | | 1.937 | 3.0 | 3500 | 0.6955 | 0.6450 | | 1.8491 | 3.43 | 4000 | 0.6452 | 0.6304 | | 1.803 | 3.86 | 4500 | 0.5961 | 0.6042 | | 1.7545 | 4.29 | 5000 | 0.5550 | 0.5748 | | 1.7045 | 4.72 | 5500 | 0.5374 | 0.5743 | | 1.6733 | 5.15 | 6000 | 0.5337 | 0.5404 | | 1.6761 | 5.57 | 6500 | 0.5054 | 0.5266 | | 1.655 | 6.0 | 7000 | 0.4926 | 0.5243 | | 1.6252 | 6.43 | 7500 | 0.4946 | 0.5183 | | 1.6209 | 6.86 | 8000 | 0.4915 | 0.5194 | | 1.5772 | 7.29 | 8500 | 0.4725 | 0.5104 | | 1.5602 | 7.72 | 9000 | 0.4726 | 0.5097 | | 1.5783 | 8.15 | 9500 | 0.4667 | 0.4956 | | 1.5442 | 8.58 | 10000 | 0.4685 | 0.4937 | | 1.5597 | 9.01 | 10500 | 0.4708 | 0.4957 | | 1.5406 | 9.43 | 11000 | 0.4539 | 0.4810 | | 1.5274 | 9.86 | 11500 | 0.4502 | 0.4783 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0