--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - de - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - German results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: de metrics: - name: Test WER type: wer value: 15.25 - name: Test CER type: cer value: 3.78 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Test WER type: wer value: 35.29 - name: Test CER type: cer value: 13.83 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: de metrics: - name: Test WER type: wer value: 36.2 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co./facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.1355 - Wer: 0.1532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 2.5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.0826 | 0.07 | 1000 | 0.4637 | 0.4654 | | 1.118 | 0.15 | 2000 | 0.2595 | 0.2687 | | 1.1268 | 0.22 | 3000 | 0.2635 | 0.2661 | | 1.0919 | 0.29 | 4000 | 0.2417 | 0.2566 | | 1.1013 | 0.37 | 5000 | 0.2414 | 0.2567 | | 1.0898 | 0.44 | 6000 | 0.2546 | 0.2731 | | 1.0808 | 0.51 | 7000 | 0.2399 | 0.2535 | | 1.0719 | 0.59 | 8000 | 0.2353 | 0.2528 | | 1.0446 | 0.66 | 9000 | 0.2427 | 0.2545 | | 1.0347 | 0.73 | 10000 | 0.2266 | 0.2402 | | 1.0457 | 0.81 | 11000 | 0.2290 | 0.2448 | | 1.0124 | 0.88 | 12000 | 0.2295 | 0.2448 | | 1.025 | 0.95 | 13000 | 0.2138 | 0.2345 | | 1.0107 | 1.03 | 14000 | 0.2108 | 0.2294 | | 0.9758 | 1.1 | 15000 | 0.2019 | 0.2204 | | 0.9547 | 1.17 | 16000 | 0.2000 | 0.2178 | | 0.986 | 1.25 | 17000 | 0.2018 | 0.2200 | | 0.9588 | 1.32 | 18000 | 0.1992 | 0.2138 | | 0.9413 | 1.39 | 19000 | 0.1898 | 0.2049 | | 0.9339 | 1.47 | 20000 | 0.1874 | 0.2056 | | 0.9268 | 1.54 | 21000 | 0.1797 | 0.1976 | | 0.9194 | 1.61 | 22000 | 0.1743 | 0.1905 | | 0.8987 | 1.69 | 23000 | 0.1738 | 0.1932 | | 0.8884 | 1.76 | 24000 | 0.1703 | 0.1873 | | 0.8939 | 1.83 | 25000 | 0.1633 | 0.1831 | | 0.8629 | 1.91 | 26000 | 0.1549 | 0.1750 | | 0.8607 | 1.98 | 27000 | 0.1550 | 0.1738 | | 0.8316 | 2.05 | 28000 | 0.1512 | 0.1709 | | 0.8321 | 2.13 | 29000 | 0.1481 | 0.1657 | | 0.825 | 2.2 | 30000 | 0.1446 | 0.1627 | | 0.8115 | 2.27 | 31000 | 0.1396 | 0.1583 | | 0.7959 | 2.35 | 32000 | 0.1389 | 0.1569 | | 0.7835 | 2.42 | 33000 | 0.1362 | 0.1545 | | 0.7959 | 2.49 | 34000 | 0.1355 | 0.1531 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-1B-german --dataset mozilla-foundation/common_voice_8_0 --config de --split test --log_outputs ``` 2. To evaluate on test dev data ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-1B-german --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```