AndreasX commited on
Commit
9cbf94f
·
verified ·
1 Parent(s): 8e11306

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +3109 -0
README.md ADDED
@@ -0,0 +1,3109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - feature-extraction
5
+ - sentence-similarity
6
+ - mteb
7
+ - llama-cpp
8
+ - gguf-my-repo
9
+ language:
10
+ - es
11
+ - en
12
+ inference: false
13
+ license: apache-2.0
14
+ base_model: jinaai/jina-embeddings-v2-base-es
15
+ model-index:
16
+ - name: jina-embeddings-v2-base-es
17
+ results:
18
+ - task:
19
+ type: Classification
20
+ dataset:
21
+ name: MTEB AmazonCounterfactualClassification (en)
22
+ type: mteb/amazon_counterfactual
23
+ config: en
24
+ split: test
25
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
26
+ metrics:
27
+ - type: accuracy
28
+ value: 74.25373134328358
29
+ - type: ap
30
+ value: 37.05201236793268
31
+ - type: f1
32
+ value: 68.16770391201077
33
+ - task:
34
+ type: Classification
35
+ dataset:
36
+ name: MTEB AmazonPolarityClassification
37
+ type: mteb/amazon_polarity
38
+ config: default
39
+ split: test
40
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
41
+ metrics:
42
+ - type: accuracy
43
+ value: 78.30885
44
+ - type: ap
45
+ value: 73.01622441156408
46
+ - type: f1
47
+ value: 78.20769284466313
48
+ - task:
49
+ type: Classification
50
+ dataset:
51
+ name: MTEB AmazonReviewsClassification (en)
52
+ type: mteb/amazon_reviews_multi
53
+ config: en
54
+ split: test
55
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
56
+ metrics:
57
+ - type: accuracy
58
+ value: 38.324
59
+ - type: f1
60
+ value: 37.89543008761673
61
+ - task:
62
+ type: Classification
63
+ dataset:
64
+ name: MTEB AmazonReviewsClassification (es)
65
+ type: mteb/amazon_reviews_multi
66
+ config: es
67
+ split: test
68
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
69
+ metrics:
70
+ - type: accuracy
71
+ value: 38.678000000000004
72
+ - type: f1
73
+ value: 38.122639506976
74
+ - task:
75
+ type: Retrieval
76
+ dataset:
77
+ name: MTEB ArguAna
78
+ type: arguana
79
+ config: default
80
+ split: test
81
+ revision: None
82
+ metrics:
83
+ - type: map_at_1
84
+ value: 23.968999999999998
85
+ - type: map_at_10
86
+ value: 40.691
87
+ - type: map_at_100
88
+ value: 41.713
89
+ - type: map_at_1000
90
+ value: 41.719
91
+ - type: map_at_3
92
+ value: 35.42
93
+ - type: map_at_5
94
+ value: 38.442
95
+ - type: mrr_at_1
96
+ value: 24.395
97
+ - type: mrr_at_10
98
+ value: 40.853
99
+ - type: mrr_at_100
100
+ value: 41.869
101
+ - type: mrr_at_1000
102
+ value: 41.874
103
+ - type: mrr_at_3
104
+ value: 35.68
105
+ - type: mrr_at_5
106
+ value: 38.572
107
+ - type: ndcg_at_1
108
+ value: 23.968999999999998
109
+ - type: ndcg_at_10
110
+ value: 50.129999999999995
111
+ - type: ndcg_at_100
112
+ value: 54.364000000000004
113
+ - type: ndcg_at_1000
114
+ value: 54.494
115
+ - type: ndcg_at_3
116
+ value: 39.231
117
+ - type: ndcg_at_5
118
+ value: 44.694
119
+ - type: precision_at_1
120
+ value: 23.968999999999998
121
+ - type: precision_at_10
122
+ value: 8.036999999999999
123
+ - type: precision_at_100
124
+ value: 0.9860000000000001
125
+ - type: precision_at_1000
126
+ value: 0.1
127
+ - type: precision_at_3
128
+ value: 16.761
129
+ - type: precision_at_5
130
+ value: 12.717
131
+ - type: recall_at_1
132
+ value: 23.968999999999998
133
+ - type: recall_at_10
134
+ value: 80.36999999999999
135
+ - type: recall_at_100
136
+ value: 98.578
137
+ - type: recall_at_1000
138
+ value: 99.57300000000001
139
+ - type: recall_at_3
140
+ value: 50.28399999999999
141
+ - type: recall_at_5
142
+ value: 63.585
143
+ - task:
144
+ type: Clustering
145
+ dataset:
146
+ name: MTEB ArxivClusteringP2P
147
+ type: mteb/arxiv-clustering-p2p
148
+ config: default
149
+ split: test
150
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
151
+ metrics:
152
+ - type: v_measure
153
+ value: 41.54886683150053
154
+ - task:
155
+ type: Clustering
156
+ dataset:
157
+ name: MTEB ArxivClusteringS2S
158
+ type: mteb/arxiv-clustering-s2s
159
+ config: default
160
+ split: test
161
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
162
+ metrics:
163
+ - type: v_measure
164
+ value: 32.186028697637234
165
+ - task:
166
+ type: Reranking
167
+ dataset:
168
+ name: MTEB AskUbuntuDupQuestions
169
+ type: mteb/askubuntudupquestions-reranking
170
+ config: default
171
+ split: test
172
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
173
+ metrics:
174
+ - type: map
175
+ value: 61.19432643698725
176
+ - type: mrr
177
+ value: 75.28646176845622
178
+ - task:
179
+ type: STS
180
+ dataset:
181
+ name: MTEB BIOSSES
182
+ type: mteb/biosses-sts
183
+ config: default
184
+ split: test
185
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
186
+ metrics:
187
+ - type: cos_sim_pearson
188
+ value: 86.3828259381228
189
+ - type: cos_sim_spearman
190
+ value: 83.04647058342209
191
+ - type: euclidean_pearson
192
+ value: 84.02895346096244
193
+ - type: euclidean_spearman
194
+ value: 82.34524978635342
195
+ - type: manhattan_pearson
196
+ value: 84.35030723233426
197
+ - type: manhattan_spearman
198
+ value: 83.17177464337936
199
+ - task:
200
+ type: Classification
201
+ dataset:
202
+ name: MTEB Banking77Classification
203
+ type: mteb/banking77
204
+ config: default
205
+ split: test
206
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
207
+ metrics:
208
+ - type: accuracy
209
+ value: 85.25649350649351
210
+ - type: f1
211
+ value: 85.22320474023192
212
+ - task:
213
+ type: Clustering
214
+ dataset:
215
+ name: MTEB BigPatentClustering
216
+ type: jinaai/big-patent-clustering
217
+ config: default
218
+ split: test
219
+ revision: 62d5330920bca426ce9d3c76ea914f15fc83e891
220
+ metrics:
221
+ - type: v_measure
222
+ value: 20.42929408254094
223
+ - task:
224
+ type: Clustering
225
+ dataset:
226
+ name: MTEB BiorxivClusteringP2P
227
+ type: mteb/biorxiv-clustering-p2p
228
+ config: default
229
+ split: test
230
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
231
+ metrics:
232
+ - type: v_measure
233
+ value: 35.165318177498136
234
+ - task:
235
+ type: Clustering
236
+ dataset:
237
+ name: MTEB BiorxivClusteringS2S
238
+ type: mteb/biorxiv-clustering-s2s
239
+ config: default
240
+ split: test
241
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
242
+ metrics:
243
+ - type: v_measure
244
+ value: 28.89030154229562
245
+ - task:
246
+ type: Retrieval
247
+ dataset:
248
+ name: MTEB CQADupstackAndroidRetrieval
249
+ type: BeIR/cqadupstack
250
+ config: default
251
+ split: test
252
+ revision: None
253
+ metrics:
254
+ - type: map_at_1
255
+ value: 30.119
256
+ - type: map_at_10
257
+ value: 42.092
258
+ - type: map_at_100
259
+ value: 43.506
260
+ - type: map_at_1000
261
+ value: 43.631
262
+ - type: map_at_3
263
+ value: 38.373000000000005
264
+ - type: map_at_5
265
+ value: 40.501
266
+ - type: mrr_at_1
267
+ value: 38.196999999999996
268
+ - type: mrr_at_10
269
+ value: 48.237
270
+ - type: mrr_at_100
271
+ value: 48.914
272
+ - type: mrr_at_1000
273
+ value: 48.959
274
+ - type: mrr_at_3
275
+ value: 45.279
276
+ - type: mrr_at_5
277
+ value: 47.11
278
+ - type: ndcg_at_1
279
+ value: 38.196999999999996
280
+ - type: ndcg_at_10
281
+ value: 48.849
282
+ - type: ndcg_at_100
283
+ value: 53.713
284
+ - type: ndcg_at_1000
285
+ value: 55.678000000000004
286
+ - type: ndcg_at_3
287
+ value: 43.546
288
+ - type: ndcg_at_5
289
+ value: 46.009
290
+ - type: precision_at_1
291
+ value: 38.196999999999996
292
+ - type: precision_at_10
293
+ value: 9.642000000000001
294
+ - type: precision_at_100
295
+ value: 1.5190000000000001
296
+ - type: precision_at_1000
297
+ value: 0.199
298
+ - type: precision_at_3
299
+ value: 21.65
300
+ - type: precision_at_5
301
+ value: 15.708
302
+ - type: recall_at_1
303
+ value: 30.119
304
+ - type: recall_at_10
305
+ value: 61.788
306
+ - type: recall_at_100
307
+ value: 82.14399999999999
308
+ - type: recall_at_1000
309
+ value: 95.003
310
+ - type: recall_at_3
311
+ value: 45.772
312
+ - type: recall_at_5
313
+ value: 53.04600000000001
314
+ - type: map_at_1
315
+ value: 28.979
316
+ - type: map_at_10
317
+ value: 37.785000000000004
318
+ - type: map_at_100
319
+ value: 38.945
320
+ - type: map_at_1000
321
+ value: 39.071
322
+ - type: map_at_3
323
+ value: 35.083999999999996
324
+ - type: map_at_5
325
+ value: 36.571999999999996
326
+ - type: mrr_at_1
327
+ value: 36.242000000000004
328
+ - type: mrr_at_10
329
+ value: 43.552
330
+ - type: mrr_at_100
331
+ value: 44.228
332
+ - type: mrr_at_1000
333
+ value: 44.275999999999996
334
+ - type: mrr_at_3
335
+ value: 41.359
336
+ - type: mrr_at_5
337
+ value: 42.598
338
+ - type: ndcg_at_1
339
+ value: 36.242000000000004
340
+ - type: ndcg_at_10
341
+ value: 42.94
342
+ - type: ndcg_at_100
343
+ value: 47.343
344
+ - type: ndcg_at_1000
345
+ value: 49.538
346
+ - type: ndcg_at_3
347
+ value: 39.086999999999996
348
+ - type: ndcg_at_5
349
+ value: 40.781
350
+ - type: precision_at_1
351
+ value: 36.242000000000004
352
+ - type: precision_at_10
353
+ value: 7.954999999999999
354
+ - type: precision_at_100
355
+ value: 1.303
356
+ - type: precision_at_1000
357
+ value: 0.178
358
+ - type: precision_at_3
359
+ value: 18.556
360
+ - type: precision_at_5
361
+ value: 13.145999999999999
362
+ - type: recall_at_1
363
+ value: 28.979
364
+ - type: recall_at_10
365
+ value: 51.835
366
+ - type: recall_at_100
367
+ value: 70.47
368
+ - type: recall_at_1000
369
+ value: 84.68299999999999
370
+ - type: recall_at_3
371
+ value: 40.410000000000004
372
+ - type: recall_at_5
373
+ value: 45.189
374
+ - type: map_at_1
375
+ value: 37.878
376
+ - type: map_at_10
377
+ value: 49.903
378
+ - type: map_at_100
379
+ value: 50.797000000000004
380
+ - type: map_at_1000
381
+ value: 50.858000000000004
382
+ - type: map_at_3
383
+ value: 46.526
384
+ - type: map_at_5
385
+ value: 48.615
386
+ - type: mrr_at_1
387
+ value: 43.135
388
+ - type: mrr_at_10
389
+ value: 53.067
390
+ - type: mrr_at_100
391
+ value: 53.668000000000006
392
+ - type: mrr_at_1000
393
+ value: 53.698
394
+ - type: mrr_at_3
395
+ value: 50.449
396
+ - type: mrr_at_5
397
+ value: 52.117000000000004
398
+ - type: ndcg_at_1
399
+ value: 43.135
400
+ - type: ndcg_at_10
401
+ value: 55.641
402
+ - type: ndcg_at_100
403
+ value: 59.427
404
+ - type: ndcg_at_1000
405
+ value: 60.655
406
+ - type: ndcg_at_3
407
+ value: 49.969
408
+ - type: ndcg_at_5
409
+ value: 53.075
410
+ - type: precision_at_1
411
+ value: 43.135
412
+ - type: precision_at_10
413
+ value: 8.997
414
+ - type: precision_at_100
415
+ value: 1.1809999999999998
416
+ - type: precision_at_1000
417
+ value: 0.133
418
+ - type: precision_at_3
419
+ value: 22.215
420
+ - type: precision_at_5
421
+ value: 15.586
422
+ - type: recall_at_1
423
+ value: 37.878
424
+ - type: recall_at_10
425
+ value: 69.405
426
+ - type: recall_at_100
427
+ value: 86.262
428
+ - type: recall_at_1000
429
+ value: 95.012
430
+ - type: recall_at_3
431
+ value: 54.458
432
+ - type: recall_at_5
433
+ value: 61.965
434
+ - type: map_at_1
435
+ value: 24.853
436
+ - type: map_at_10
437
+ value: 32.402
438
+ - type: map_at_100
439
+ value: 33.417
440
+ - type: map_at_1000
441
+ value: 33.498
442
+ - type: map_at_3
443
+ value: 30.024
444
+ - type: map_at_5
445
+ value: 31.407
446
+ - type: mrr_at_1
447
+ value: 26.667
448
+ - type: mrr_at_10
449
+ value: 34.399
450
+ - type: mrr_at_100
451
+ value: 35.284
452
+ - type: mrr_at_1000
453
+ value: 35.345
454
+ - type: mrr_at_3
455
+ value: 32.109
456
+ - type: mrr_at_5
457
+ value: 33.375
458
+ - type: ndcg_at_1
459
+ value: 26.667
460
+ - type: ndcg_at_10
461
+ value: 36.854
462
+ - type: ndcg_at_100
463
+ value: 42.196
464
+ - type: ndcg_at_1000
465
+ value: 44.303
466
+ - type: ndcg_at_3
467
+ value: 32.186
468
+ - type: ndcg_at_5
469
+ value: 34.512
470
+ - type: precision_at_1
471
+ value: 26.667
472
+ - type: precision_at_10
473
+ value: 5.559
474
+ - type: precision_at_100
475
+ value: 0.88
476
+ - type: precision_at_1000
477
+ value: 0.109
478
+ - type: precision_at_3
479
+ value: 13.333
480
+ - type: precision_at_5
481
+ value: 9.379
482
+ - type: recall_at_1
483
+ value: 24.853
484
+ - type: recall_at_10
485
+ value: 48.636
486
+ - type: recall_at_100
487
+ value: 73.926
488
+ - type: recall_at_1000
489
+ value: 89.94
490
+ - type: recall_at_3
491
+ value: 36.266
492
+ - type: recall_at_5
493
+ value: 41.723
494
+ - type: map_at_1
495
+ value: 14.963999999999999
496
+ - type: map_at_10
497
+ value: 22.591
498
+ - type: map_at_100
499
+ value: 23.735999999999997
500
+ - type: map_at_1000
501
+ value: 23.868000000000002
502
+ - type: map_at_3
503
+ value: 20.093
504
+ - type: map_at_5
505
+ value: 21.499
506
+ - type: mrr_at_1
507
+ value: 18.407999999999998
508
+ - type: mrr_at_10
509
+ value: 26.863
510
+ - type: mrr_at_100
511
+ value: 27.87
512
+ - type: mrr_at_1000
513
+ value: 27.947
514
+ - type: mrr_at_3
515
+ value: 24.254
516
+ - type: mrr_at_5
517
+ value: 25.784000000000002
518
+ - type: ndcg_at_1
519
+ value: 18.407999999999998
520
+ - type: ndcg_at_10
521
+ value: 27.549
522
+ - type: ndcg_at_100
523
+ value: 33.188
524
+ - type: ndcg_at_1000
525
+ value: 36.312
526
+ - type: ndcg_at_3
527
+ value: 22.862
528
+ - type: ndcg_at_5
529
+ value: 25.130999999999997
530
+ - type: precision_at_1
531
+ value: 18.407999999999998
532
+ - type: precision_at_10
533
+ value: 5.087
534
+ - type: precision_at_100
535
+ value: 0.923
536
+ - type: precision_at_1000
537
+ value: 0.133
538
+ - type: precision_at_3
539
+ value: 10.987
540
+ - type: precision_at_5
541
+ value: 8.209
542
+ - type: recall_at_1
543
+ value: 14.963999999999999
544
+ - type: recall_at_10
545
+ value: 38.673
546
+ - type: recall_at_100
547
+ value: 63.224999999999994
548
+ - type: recall_at_1000
549
+ value: 85.443
550
+ - type: recall_at_3
551
+ value: 25.840000000000003
552
+ - type: recall_at_5
553
+ value: 31.503999999999998
554
+ - type: map_at_1
555
+ value: 27.861000000000004
556
+ - type: map_at_10
557
+ value: 37.562
558
+ - type: map_at_100
559
+ value: 38.906
560
+ - type: map_at_1000
561
+ value: 39.021
562
+ - type: map_at_3
563
+ value: 34.743
564
+ - type: map_at_5
565
+ value: 36.168
566
+ - type: mrr_at_1
567
+ value: 34.455999999999996
568
+ - type: mrr_at_10
569
+ value: 43.428
570
+ - type: mrr_at_100
571
+ value: 44.228
572
+ - type: mrr_at_1000
573
+ value: 44.278
574
+ - type: mrr_at_3
575
+ value: 41.001
576
+ - type: mrr_at_5
577
+ value: 42.315000000000005
578
+ - type: ndcg_at_1
579
+ value: 34.455999999999996
580
+ - type: ndcg_at_10
581
+ value: 43.477
582
+ - type: ndcg_at_100
583
+ value: 48.953
584
+ - type: ndcg_at_1000
585
+ value: 51.19200000000001
586
+ - type: ndcg_at_3
587
+ value: 38.799
588
+ - type: ndcg_at_5
589
+ value: 40.743
590
+ - type: precision_at_1
591
+ value: 34.455999999999996
592
+ - type: precision_at_10
593
+ value: 7.902000000000001
594
+ - type: precision_at_100
595
+ value: 1.244
596
+ - type: precision_at_1000
597
+ value: 0.161
598
+ - type: precision_at_3
599
+ value: 18.511
600
+ - type: precision_at_5
601
+ value: 12.859000000000002
602
+ - type: recall_at_1
603
+ value: 27.861000000000004
604
+ - type: recall_at_10
605
+ value: 55.36
606
+ - type: recall_at_100
607
+ value: 78.384
608
+ - type: recall_at_1000
609
+ value: 93.447
610
+ - type: recall_at_3
611
+ value: 41.926
612
+ - type: recall_at_5
613
+ value: 47.257
614
+ - type: map_at_1
615
+ value: 26.375
616
+ - type: map_at_10
617
+ value: 35.571000000000005
618
+ - type: map_at_100
619
+ value: 36.785000000000004
620
+ - type: map_at_1000
621
+ value: 36.905
622
+ - type: map_at_3
623
+ value: 32.49
624
+ - type: map_at_5
625
+ value: 34.123999999999995
626
+ - type: mrr_at_1
627
+ value: 32.647999999999996
628
+ - type: mrr_at_10
629
+ value: 40.598
630
+ - type: mrr_at_100
631
+ value: 41.484
632
+ - type: mrr_at_1000
633
+ value: 41.546
634
+ - type: mrr_at_3
635
+ value: 37.9
636
+ - type: mrr_at_5
637
+ value: 39.401
638
+ - type: ndcg_at_1
639
+ value: 32.647999999999996
640
+ - type: ndcg_at_10
641
+ value: 41.026
642
+ - type: ndcg_at_100
643
+ value: 46.365
644
+ - type: ndcg_at_1000
645
+ value: 48.876
646
+ - type: ndcg_at_3
647
+ value: 35.843
648
+ - type: ndcg_at_5
649
+ value: 38.118
650
+ - type: precision_at_1
651
+ value: 32.647999999999996
652
+ - type: precision_at_10
653
+ value: 7.443
654
+ - type: precision_at_100
655
+ value: 1.18
656
+ - type: precision_at_1000
657
+ value: 0.158
658
+ - type: precision_at_3
659
+ value: 16.819
660
+ - type: precision_at_5
661
+ value: 11.985999999999999
662
+ - type: recall_at_1
663
+ value: 26.375
664
+ - type: recall_at_10
665
+ value: 52.471000000000004
666
+ - type: recall_at_100
667
+ value: 75.354
668
+ - type: recall_at_1000
669
+ value: 92.35
670
+ - type: recall_at_3
671
+ value: 37.893
672
+ - type: recall_at_5
673
+ value: 43.935
674
+ - type: map_at_1
675
+ value: 25.012666666666668
676
+ - type: map_at_10
677
+ value: 33.685833333333335
678
+ - type: map_at_100
679
+ value: 34.849250000000005
680
+ - type: map_at_1000
681
+ value: 34.970083333333335
682
+ - type: map_at_3
683
+ value: 31.065083333333334
684
+ - type: map_at_5
685
+ value: 32.494416666666666
686
+ - type: mrr_at_1
687
+ value: 29.772666666666662
688
+ - type: mrr_at_10
689
+ value: 37.824666666666666
690
+ - type: mrr_at_100
691
+ value: 38.66741666666666
692
+ - type: mrr_at_1000
693
+ value: 38.72916666666666
694
+ - type: mrr_at_3
695
+ value: 35.54575
696
+ - type: mrr_at_5
697
+ value: 36.81524999999999
698
+ - type: ndcg_at_1
699
+ value: 29.772666666666662
700
+ - type: ndcg_at_10
701
+ value: 38.78241666666666
702
+ - type: ndcg_at_100
703
+ value: 43.84591666666667
704
+ - type: ndcg_at_1000
705
+ value: 46.275416666666665
706
+ - type: ndcg_at_3
707
+ value: 34.33416666666667
708
+ - type: ndcg_at_5
709
+ value: 36.345166666666664
710
+ - type: precision_at_1
711
+ value: 29.772666666666662
712
+ - type: precision_at_10
713
+ value: 6.794916666666667
714
+ - type: precision_at_100
715
+ value: 1.106416666666667
716
+ - type: precision_at_1000
717
+ value: 0.15033333333333335
718
+ - type: precision_at_3
719
+ value: 15.815083333333336
720
+ - type: precision_at_5
721
+ value: 11.184166666666664
722
+ - type: recall_at_1
723
+ value: 25.012666666666668
724
+ - type: recall_at_10
725
+ value: 49.748500000000014
726
+ - type: recall_at_100
727
+ value: 72.11341666666667
728
+ - type: recall_at_1000
729
+ value: 89.141
730
+ - type: recall_at_3
731
+ value: 37.242999999999995
732
+ - type: recall_at_5
733
+ value: 42.49033333333333
734
+ - type: map_at_1
735
+ value: 23.177
736
+ - type: map_at_10
737
+ value: 29.310000000000002
738
+ - type: map_at_100
739
+ value: 30.188
740
+ - type: map_at_1000
741
+ value: 30.29
742
+ - type: map_at_3
743
+ value: 27.356
744
+ - type: map_at_5
745
+ value: 28.410999999999998
746
+ - type: mrr_at_1
747
+ value: 26.074
748
+ - type: mrr_at_10
749
+ value: 32.002
750
+ - type: mrr_at_100
751
+ value: 32.838
752
+ - type: mrr_at_1000
753
+ value: 32.909
754
+ - type: mrr_at_3
755
+ value: 30.317
756
+ - type: mrr_at_5
757
+ value: 31.222
758
+ - type: ndcg_at_1
759
+ value: 26.074
760
+ - type: ndcg_at_10
761
+ value: 32.975
762
+ - type: ndcg_at_100
763
+ value: 37.621
764
+ - type: ndcg_at_1000
765
+ value: 40.253
766
+ - type: ndcg_at_3
767
+ value: 29.452
768
+ - type: ndcg_at_5
769
+ value: 31.020999999999997
770
+ - type: precision_at_1
771
+ value: 26.074
772
+ - type: precision_at_10
773
+ value: 5.077
774
+ - type: precision_at_100
775
+ value: 0.8049999999999999
776
+ - type: precision_at_1000
777
+ value: 0.11100000000000002
778
+ - type: precision_at_3
779
+ value: 12.526000000000002
780
+ - type: precision_at_5
781
+ value: 8.588999999999999
782
+ - type: recall_at_1
783
+ value: 23.177
784
+ - type: recall_at_10
785
+ value: 41.613
786
+ - type: recall_at_100
787
+ value: 63.287000000000006
788
+ - type: recall_at_1000
789
+ value: 83.013
790
+ - type: recall_at_3
791
+ value: 31.783
792
+ - type: recall_at_5
793
+ value: 35.769
794
+ - type: map_at_1
795
+ value: 15.856
796
+ - type: map_at_10
797
+ value: 22.651
798
+ - type: map_at_100
799
+ value: 23.649
800
+ - type: map_at_1000
801
+ value: 23.783
802
+ - type: map_at_3
803
+ value: 20.591
804
+ - type: map_at_5
805
+ value: 21.684
806
+ - type: mrr_at_1
807
+ value: 19.408
808
+ - type: mrr_at_10
809
+ value: 26.51
810
+ - type: mrr_at_100
811
+ value: 27.356
812
+ - type: mrr_at_1000
813
+ value: 27.439999999999998
814
+ - type: mrr_at_3
815
+ value: 24.547
816
+ - type: mrr_at_5
817
+ value: 25.562
818
+ - type: ndcg_at_1
819
+ value: 19.408
820
+ - type: ndcg_at_10
821
+ value: 27.072000000000003
822
+ - type: ndcg_at_100
823
+ value: 31.980999999999998
824
+ - type: ndcg_at_1000
825
+ value: 35.167
826
+ - type: ndcg_at_3
827
+ value: 23.338
828
+ - type: ndcg_at_5
829
+ value: 24.94
830
+ - type: precision_at_1
831
+ value: 19.408
832
+ - type: precision_at_10
833
+ value: 4.9590000000000005
834
+ - type: precision_at_100
835
+ value: 0.8710000000000001
836
+ - type: precision_at_1000
837
+ value: 0.132
838
+ - type: precision_at_3
839
+ value: 11.138
840
+ - type: precision_at_5
841
+ value: 7.949000000000001
842
+ - type: recall_at_1
843
+ value: 15.856
844
+ - type: recall_at_10
845
+ value: 36.578
846
+ - type: recall_at_100
847
+ value: 58.89
848
+ - type: recall_at_1000
849
+ value: 81.743
850
+ - type: recall_at_3
851
+ value: 25.94
852
+ - type: recall_at_5
853
+ value: 30.153999999999996
854
+ - type: map_at_1
855
+ value: 25.892
856
+ - type: map_at_10
857
+ value: 33.899
858
+ - type: map_at_100
859
+ value: 34.955000000000005
860
+ - type: map_at_1000
861
+ value: 35.066
862
+ - type: map_at_3
863
+ value: 31.41
864
+ - type: map_at_5
865
+ value: 32.669
866
+ - type: mrr_at_1
867
+ value: 30.224
868
+ - type: mrr_at_10
869
+ value: 37.936
870
+ - type: mrr_at_100
871
+ value: 38.777
872
+ - type: mrr_at_1000
873
+ value: 38.85
874
+ - type: mrr_at_3
875
+ value: 35.821
876
+ - type: mrr_at_5
877
+ value: 36.894
878
+ - type: ndcg_at_1
879
+ value: 30.224
880
+ - type: ndcg_at_10
881
+ value: 38.766
882
+ - type: ndcg_at_100
883
+ value: 43.806
884
+ - type: ndcg_at_1000
885
+ value: 46.373999999999995
886
+ - type: ndcg_at_3
887
+ value: 34.325
888
+ - type: ndcg_at_5
889
+ value: 36.096000000000004
890
+ - type: precision_at_1
891
+ value: 30.224
892
+ - type: precision_at_10
893
+ value: 6.446000000000001
894
+ - type: precision_at_100
895
+ value: 1.0
896
+ - type: precision_at_1000
897
+ value: 0.133
898
+ - type: precision_at_3
899
+ value: 15.392
900
+ - type: precision_at_5
901
+ value: 10.671999999999999
902
+ - type: recall_at_1
903
+ value: 25.892
904
+ - type: recall_at_10
905
+ value: 49.573
906
+ - type: recall_at_100
907
+ value: 71.885
908
+ - type: recall_at_1000
909
+ value: 89.912
910
+ - type: recall_at_3
911
+ value: 37.226
912
+ - type: recall_at_5
913
+ value: 41.74
914
+ - type: map_at_1
915
+ value: 23.915
916
+ - type: map_at_10
917
+ value: 33.613
918
+ - type: map_at_100
919
+ value: 35.333999999999996
920
+ - type: map_at_1000
921
+ value: 35.563
922
+ - type: map_at_3
923
+ value: 31.203999999999997
924
+ - type: map_at_5
925
+ value: 32.479
926
+ - type: mrr_at_1
927
+ value: 29.447000000000003
928
+ - type: mrr_at_10
929
+ value: 38.440000000000005
930
+ - type: mrr_at_100
931
+ value: 39.459
932
+ - type: mrr_at_1000
933
+ value: 39.513999999999996
934
+ - type: mrr_at_3
935
+ value: 36.495
936
+ - type: mrr_at_5
937
+ value: 37.592
938
+ - type: ndcg_at_1
939
+ value: 29.447000000000003
940
+ - type: ndcg_at_10
941
+ value: 39.341
942
+ - type: ndcg_at_100
943
+ value: 45.382
944
+ - type: ndcg_at_1000
945
+ value: 47.921
946
+ - type: ndcg_at_3
947
+ value: 35.671
948
+ - type: ndcg_at_5
949
+ value: 37.299
950
+ - type: precision_at_1
951
+ value: 29.447000000000003
952
+ - type: precision_at_10
953
+ value: 7.648000000000001
954
+ - type: precision_at_100
955
+ value: 1.567
956
+ - type: precision_at_1000
957
+ value: 0.241
958
+ - type: precision_at_3
959
+ value: 17.194000000000003
960
+ - type: precision_at_5
961
+ value: 12.253
962
+ - type: recall_at_1
963
+ value: 23.915
964
+ - type: recall_at_10
965
+ value: 49.491
966
+ - type: recall_at_100
967
+ value: 76.483
968
+ - type: recall_at_1000
969
+ value: 92.674
970
+ - type: recall_at_3
971
+ value: 38.878
972
+ - type: recall_at_5
973
+ value: 43.492
974
+ - type: map_at_1
975
+ value: 20.283
976
+ - type: map_at_10
977
+ value: 26.851000000000003
978
+ - type: map_at_100
979
+ value: 27.973
980
+ - type: map_at_1000
981
+ value: 28.087
982
+ - type: map_at_3
983
+ value: 24.887
984
+ - type: map_at_5
985
+ value: 25.804
986
+ - type: mrr_at_1
987
+ value: 22.366
988
+ - type: mrr_at_10
989
+ value: 28.864
990
+ - type: mrr_at_100
991
+ value: 29.903000000000002
992
+ - type: mrr_at_1000
993
+ value: 29.988
994
+ - type: mrr_at_3
995
+ value: 27.017999999999997
996
+ - type: mrr_at_5
997
+ value: 27.813
998
+ - type: ndcg_at_1
999
+ value: 22.366
1000
+ - type: ndcg_at_10
1001
+ value: 30.898999999999997
1002
+ - type: ndcg_at_100
1003
+ value: 36.176
1004
+ - type: ndcg_at_1000
1005
+ value: 39.036
1006
+ - type: ndcg_at_3
1007
+ value: 26.932000000000002
1008
+ - type: ndcg_at_5
1009
+ value: 28.416999999999998
1010
+ - type: precision_at_1
1011
+ value: 22.366
1012
+ - type: precision_at_10
1013
+ value: 4.824
1014
+ - type: precision_at_100
1015
+ value: 0.804
1016
+ - type: precision_at_1000
1017
+ value: 0.116
1018
+ - type: precision_at_3
1019
+ value: 11.459999999999999
1020
+ - type: precision_at_5
1021
+ value: 7.8740000000000006
1022
+ - type: recall_at_1
1023
+ value: 20.283
1024
+ - type: recall_at_10
1025
+ value: 41.559000000000005
1026
+ - type: recall_at_100
1027
+ value: 65.051
1028
+ - type: recall_at_1000
1029
+ value: 86.47200000000001
1030
+ - type: recall_at_3
1031
+ value: 30.524
1032
+ - type: recall_at_5
1033
+ value: 34.11
1034
+ - task:
1035
+ type: Retrieval
1036
+ dataset:
1037
+ name: MTEB ClimateFEVER
1038
+ type: climate-fever
1039
+ config: default
1040
+ split: test
1041
+ revision: None
1042
+ metrics:
1043
+ - type: map_at_1
1044
+ value: 11.326
1045
+ - type: map_at_10
1046
+ value: 19.357
1047
+ - type: map_at_100
1048
+ value: 21.014
1049
+ - type: map_at_1000
1050
+ value: 21.188000000000002
1051
+ - type: map_at_3
1052
+ value: 16.305
1053
+ - type: map_at_5
1054
+ value: 17.886
1055
+ - type: mrr_at_1
1056
+ value: 24.820999999999998
1057
+ - type: mrr_at_10
1058
+ value: 36.150999999999996
1059
+ - type: mrr_at_100
1060
+ value: 37.080999999999996
1061
+ - type: mrr_at_1000
1062
+ value: 37.123
1063
+ - type: mrr_at_3
1064
+ value: 32.952999999999996
1065
+ - type: mrr_at_5
1066
+ value: 34.917
1067
+ - type: ndcg_at_1
1068
+ value: 24.820999999999998
1069
+ - type: ndcg_at_10
1070
+ value: 27.131
1071
+ - type: ndcg_at_100
1072
+ value: 33.841
1073
+ - type: ndcg_at_1000
1074
+ value: 37.159
1075
+ - type: ndcg_at_3
1076
+ value: 22.311
1077
+ - type: ndcg_at_5
1078
+ value: 24.026
1079
+ - type: precision_at_1
1080
+ value: 24.820999999999998
1081
+ - type: precision_at_10
1082
+ value: 8.450000000000001
1083
+ - type: precision_at_100
1084
+ value: 1.557
1085
+ - type: precision_at_1000
1086
+ value: 0.218
1087
+ - type: precision_at_3
1088
+ value: 16.612
1089
+ - type: precision_at_5
1090
+ value: 12.808
1091
+ - type: recall_at_1
1092
+ value: 11.326
1093
+ - type: recall_at_10
1094
+ value: 32.548
1095
+ - type: recall_at_100
1096
+ value: 55.803000000000004
1097
+ - type: recall_at_1000
1098
+ value: 74.636
1099
+ - type: recall_at_3
1100
+ value: 20.549
1101
+ - type: recall_at_5
1102
+ value: 25.514
1103
+ - task:
1104
+ type: Retrieval
1105
+ dataset:
1106
+ name: MTEB DBPedia
1107
+ type: dbpedia-entity
1108
+ config: default
1109
+ split: test
1110
+ revision: None
1111
+ metrics:
1112
+ - type: map_at_1
1113
+ value: 7.481
1114
+ - type: map_at_10
1115
+ value: 15.043999999999999
1116
+ - type: map_at_100
1117
+ value: 20.194000000000003
1118
+ - type: map_at_1000
1119
+ value: 21.423000000000002
1120
+ - type: map_at_3
1121
+ value: 11.238
1122
+ - type: map_at_5
1123
+ value: 12.828999999999999
1124
+ - type: mrr_at_1
1125
+ value: 54.50000000000001
1126
+ - type: mrr_at_10
1127
+ value: 64.713
1128
+ - type: mrr_at_100
1129
+ value: 65.216
1130
+ - type: mrr_at_1000
1131
+ value: 65.23
1132
+ - type: mrr_at_3
1133
+ value: 62.74999999999999
1134
+ - type: mrr_at_5
1135
+ value: 63.87500000000001
1136
+ - type: ndcg_at_1
1137
+ value: 43.375
1138
+ - type: ndcg_at_10
1139
+ value: 32.631
1140
+ - type: ndcg_at_100
1141
+ value: 36.338
1142
+ - type: ndcg_at_1000
1143
+ value: 43.541000000000004
1144
+ - type: ndcg_at_3
1145
+ value: 36.746
1146
+ - type: ndcg_at_5
1147
+ value: 34.419
1148
+ - type: precision_at_1
1149
+ value: 54.50000000000001
1150
+ - type: precision_at_10
1151
+ value: 24.825
1152
+ - type: precision_at_100
1153
+ value: 7.698
1154
+ - type: precision_at_1000
1155
+ value: 1.657
1156
+ - type: precision_at_3
1157
+ value: 38.917
1158
+ - type: precision_at_5
1159
+ value: 32.35
1160
+ - type: recall_at_1
1161
+ value: 7.481
1162
+ - type: recall_at_10
1163
+ value: 20.341
1164
+ - type: recall_at_100
1165
+ value: 41.778
1166
+ - type: recall_at_1000
1167
+ value: 64.82
1168
+ - type: recall_at_3
1169
+ value: 12.748000000000001
1170
+ - type: recall_at_5
1171
+ value: 15.507000000000001
1172
+ - task:
1173
+ type: Classification
1174
+ dataset:
1175
+ name: MTEB EmotionClassification
1176
+ type: mteb/emotion
1177
+ config: default
1178
+ split: test
1179
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1180
+ metrics:
1181
+ - type: accuracy
1182
+ value: 46.580000000000005
1183
+ - type: f1
1184
+ value: 41.5149462395095
1185
+ - task:
1186
+ type: Retrieval
1187
+ dataset:
1188
+ name: MTEB FEVER
1189
+ type: fever
1190
+ config: default
1191
+ split: test
1192
+ revision: None
1193
+ metrics:
1194
+ - type: map_at_1
1195
+ value: 61.683
1196
+ - type: map_at_10
1197
+ value: 73.071
1198
+ - type: map_at_100
1199
+ value: 73.327
1200
+ - type: map_at_1000
1201
+ value: 73.341
1202
+ - type: map_at_3
1203
+ value: 71.446
1204
+ - type: map_at_5
1205
+ value: 72.557
1206
+ - type: mrr_at_1
1207
+ value: 66.44200000000001
1208
+ - type: mrr_at_10
1209
+ value: 77.725
1210
+ - type: mrr_at_100
1211
+ value: 77.89399999999999
1212
+ - type: mrr_at_1000
1213
+ value: 77.898
1214
+ - type: mrr_at_3
1215
+ value: 76.283
1216
+ - type: mrr_at_5
1217
+ value: 77.29700000000001
1218
+ - type: ndcg_at_1
1219
+ value: 66.44200000000001
1220
+ - type: ndcg_at_10
1221
+ value: 78.43
1222
+ - type: ndcg_at_100
1223
+ value: 79.462
1224
+ - type: ndcg_at_1000
1225
+ value: 79.754
1226
+ - type: ndcg_at_3
1227
+ value: 75.53800000000001
1228
+ - type: ndcg_at_5
1229
+ value: 77.332
1230
+ - type: precision_at_1
1231
+ value: 66.44200000000001
1232
+ - type: precision_at_10
1233
+ value: 9.878
1234
+ - type: precision_at_100
1235
+ value: 1.051
1236
+ - type: precision_at_1000
1237
+ value: 0.109
1238
+ - type: precision_at_3
1239
+ value: 29.878
1240
+ - type: precision_at_5
1241
+ value: 18.953
1242
+ - type: recall_at_1
1243
+ value: 61.683
1244
+ - type: recall_at_10
1245
+ value: 90.259
1246
+ - type: recall_at_100
1247
+ value: 94.633
1248
+ - type: recall_at_1000
1249
+ value: 96.60499999999999
1250
+ - type: recall_at_3
1251
+ value: 82.502
1252
+ - type: recall_at_5
1253
+ value: 86.978
1254
+ - task:
1255
+ type: Retrieval
1256
+ dataset:
1257
+ name: MTEB FiQA2018
1258
+ type: fiqa
1259
+ config: default
1260
+ split: test
1261
+ revision: None
1262
+ metrics:
1263
+ - type: map_at_1
1264
+ value: 17.724
1265
+ - type: map_at_10
1266
+ value: 29.487999999999996
1267
+ - type: map_at_100
1268
+ value: 31.243
1269
+ - type: map_at_1000
1270
+ value: 31.419999999999998
1271
+ - type: map_at_3
1272
+ value: 25.612000000000002
1273
+ - type: map_at_5
1274
+ value: 27.859
1275
+ - type: mrr_at_1
1276
+ value: 35.802
1277
+ - type: mrr_at_10
1278
+ value: 44.684000000000005
1279
+ - type: mrr_at_100
1280
+ value: 45.578
1281
+ - type: mrr_at_1000
1282
+ value: 45.621
1283
+ - type: mrr_at_3
1284
+ value: 42.361
1285
+ - type: mrr_at_5
1286
+ value: 43.85
1287
+ - type: ndcg_at_1
1288
+ value: 35.802
1289
+ - type: ndcg_at_10
1290
+ value: 37.009
1291
+ - type: ndcg_at_100
1292
+ value: 43.903
1293
+ - type: ndcg_at_1000
1294
+ value: 47.019
1295
+ - type: ndcg_at_3
1296
+ value: 33.634
1297
+ - type: ndcg_at_5
1298
+ value: 34.965
1299
+ - type: precision_at_1
1300
+ value: 35.802
1301
+ - type: precision_at_10
1302
+ value: 10.386
1303
+ - type: precision_at_100
1304
+ value: 1.7309999999999999
1305
+ - type: precision_at_1000
1306
+ value: 0.231
1307
+ - type: precision_at_3
1308
+ value: 22.84
1309
+ - type: precision_at_5
1310
+ value: 17.037
1311
+ - type: recall_at_1
1312
+ value: 17.724
1313
+ - type: recall_at_10
1314
+ value: 43.708000000000006
1315
+ - type: recall_at_100
1316
+ value: 69.902
1317
+ - type: recall_at_1000
1318
+ value: 88.51
1319
+ - type: recall_at_3
1320
+ value: 30.740000000000002
1321
+ - type: recall_at_5
1322
+ value: 36.742000000000004
1323
+ - task:
1324
+ type: Clustering
1325
+ dataset:
1326
+ name: MTEB FloresClusteringS2S
1327
+ type: jinaai/flores_clustering
1328
+ config: default
1329
+ split: test
1330
+ revision: 480b580487f53a46f881354a8348335d4edbb2de
1331
+ metrics:
1332
+ - type: v_measure
1333
+ value: 39.79120149869612
1334
+ - task:
1335
+ type: Retrieval
1336
+ dataset:
1337
+ name: MTEB HotpotQA
1338
+ type: hotpotqa
1339
+ config: default
1340
+ split: test
1341
+ revision: None
1342
+ metrics:
1343
+ - type: map_at_1
1344
+ value: 34.801
1345
+ - type: map_at_10
1346
+ value: 50.42100000000001
1347
+ - type: map_at_100
1348
+ value: 51.254
1349
+ - type: map_at_1000
1350
+ value: 51.327999999999996
1351
+ - type: map_at_3
1352
+ value: 47.56
1353
+ - type: map_at_5
1354
+ value: 49.379
1355
+ - type: mrr_at_1
1356
+ value: 69.602
1357
+ - type: mrr_at_10
1358
+ value: 76.385
1359
+ - type: mrr_at_100
1360
+ value: 76.668
1361
+ - type: mrr_at_1000
1362
+ value: 76.683
1363
+ - type: mrr_at_3
1364
+ value: 75.102
1365
+ - type: mrr_at_5
1366
+ value: 75.949
1367
+ - type: ndcg_at_1
1368
+ value: 69.602
1369
+ - type: ndcg_at_10
1370
+ value: 59.476
1371
+ - type: ndcg_at_100
1372
+ value: 62.527
1373
+ - type: ndcg_at_1000
1374
+ value: 64.043
1375
+ - type: ndcg_at_3
1376
+ value: 55.155
1377
+ - type: ndcg_at_5
1378
+ value: 57.623000000000005
1379
+ - type: precision_at_1
1380
+ value: 69.602
1381
+ - type: precision_at_10
1382
+ value: 12.292
1383
+ - type: precision_at_100
1384
+ value: 1.467
1385
+ - type: precision_at_1000
1386
+ value: 0.167
1387
+ - type: precision_at_3
1388
+ value: 34.634
1389
+ - type: precision_at_5
1390
+ value: 22.728
1391
+ - type: recall_at_1
1392
+ value: 34.801
1393
+ - type: recall_at_10
1394
+ value: 61.458
1395
+ - type: recall_at_100
1396
+ value: 73.363
1397
+ - type: recall_at_1000
1398
+ value: 83.43
1399
+ - type: recall_at_3
1400
+ value: 51.951
1401
+ - type: recall_at_5
1402
+ value: 56.82000000000001
1403
+ - task:
1404
+ type: Classification
1405
+ dataset:
1406
+ name: MTEB ImdbClassification
1407
+ type: mteb/imdb
1408
+ config: default
1409
+ split: test
1410
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1411
+ metrics:
1412
+ - type: accuracy
1413
+ value: 67.46079999999999
1414
+ - type: ap
1415
+ value: 61.81278199159353
1416
+ - type: f1
1417
+ value: 67.26505019954826
1418
+ - task:
1419
+ type: Reranking
1420
+ dataset:
1421
+ name: MTEB MIRACL
1422
+ type: jinaai/miracl
1423
+ config: default
1424
+ split: test
1425
+ revision: d28a029f35c4ff7f616df47b0edf54e6882395e6
1426
+ metrics:
1427
+ - type: map
1428
+ value: 73.90464144118539
1429
+ - type: mrr
1430
+ value: 82.44674693216022
1431
+ - task:
1432
+ type: Retrieval
1433
+ dataset:
1434
+ name: MTEB MIRACLRetrieval
1435
+ type: jinaai/miracl
1436
+ config: default
1437
+ split: test
1438
+ revision: None
1439
+ metrics:
1440
+ - type: map_at_1
1441
+ value: 21.299
1442
+ - type: map_at_10
1443
+ value: 70.547
1444
+ - type: map_at_100
1445
+ value: 72.394
1446
+ - type: map_at_1000
1447
+ value: 72.39999999999999
1448
+ - type: map_at_3
1449
+ value: 41.317
1450
+ - type: map_at_5
1451
+ value: 53.756
1452
+ - type: mrr_at_1
1453
+ value: 72.84
1454
+ - type: mrr_at_10
1455
+ value: 82.466
1456
+ - type: mrr_at_100
1457
+ value: 82.52199999999999
1458
+ - type: mrr_at_1000
1459
+ value: 82.52199999999999
1460
+ - type: mrr_at_3
1461
+ value: 80.607
1462
+ - type: mrr_at_5
1463
+ value: 82.065
1464
+ - type: ndcg_at_1
1465
+ value: 72.994
1466
+ - type: ndcg_at_10
1467
+ value: 80.89
1468
+ - type: ndcg_at_100
1469
+ value: 83.30199999999999
1470
+ - type: ndcg_at_1000
1471
+ value: 83.337
1472
+ - type: ndcg_at_3
1473
+ value: 70.357
1474
+ - type: ndcg_at_5
1475
+ value: 72.529
1476
+ - type: precision_at_1
1477
+ value: 72.994
1478
+ - type: precision_at_10
1479
+ value: 43.056
1480
+ - type: precision_at_100
1481
+ value: 4.603
1482
+ - type: precision_at_1000
1483
+ value: 0.461
1484
+ - type: precision_at_3
1485
+ value: 61.626000000000005
1486
+ - type: precision_at_5
1487
+ value: 55.525000000000006
1488
+ - type: recall_at_1
1489
+ value: 21.299
1490
+ - type: recall_at_10
1491
+ value: 93.903
1492
+ - type: recall_at_100
1493
+ value: 99.86699999999999
1494
+ - type: recall_at_1000
1495
+ value: 100.0
1496
+ - type: recall_at_3
1497
+ value: 46.653
1498
+ - type: recall_at_5
1499
+ value: 65.72200000000001
1500
+ - task:
1501
+ type: Classification
1502
+ dataset:
1503
+ name: MTEB MTOPDomainClassification (en)
1504
+ type: mteb/mtop_domain
1505
+ config: en
1506
+ split: test
1507
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1508
+ metrics:
1509
+ - type: accuracy
1510
+ value: 90.37163702690378
1511
+ - type: f1
1512
+ value: 90.18615216514222
1513
+ - task:
1514
+ type: Classification
1515
+ dataset:
1516
+ name: MTEB MTOPDomainClassification (es)
1517
+ type: mteb/mtop_domain
1518
+ config: es
1519
+ split: test
1520
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1521
+ metrics:
1522
+ - type: accuracy
1523
+ value: 89.88992661774515
1524
+ - type: f1
1525
+ value: 89.3738963046966
1526
+ - task:
1527
+ type: Classification
1528
+ dataset:
1529
+ name: MTEB MTOPIntentClassification (en)
1530
+ type: mteb/mtop_intent
1531
+ config: en
1532
+ split: test
1533
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1534
+ metrics:
1535
+ - type: accuracy
1536
+ value: 71.97218422252622
1537
+ - type: f1
1538
+ value: 54.03096570916335
1539
+ - task:
1540
+ type: Classification
1541
+ dataset:
1542
+ name: MTEB MTOPIntentClassification (es)
1543
+ type: mteb/mtop_intent
1544
+ config: es
1545
+ split: test
1546
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1547
+ metrics:
1548
+ - type: accuracy
1549
+ value: 68.75917278185457
1550
+ - type: f1
1551
+ value: 49.144083814705844
1552
+ - task:
1553
+ type: Classification
1554
+ dataset:
1555
+ name: MTEB MassiveIntentClassification (en)
1556
+ type: mteb/amazon_massive_intent
1557
+ config: en
1558
+ split: test
1559
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1560
+ metrics:
1561
+ - type: accuracy
1562
+ value: 70.75991930060525
1563
+ - type: f1
1564
+ value: 69.37993796176502
1565
+ - task:
1566
+ type: Classification
1567
+ dataset:
1568
+ name: MTEB MassiveIntentClassification (es)
1569
+ type: mteb/amazon_massive_intent
1570
+ config: es
1571
+ split: test
1572
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1573
+ metrics:
1574
+ - type: accuracy
1575
+ value: 66.93006052454606
1576
+ - type: f1
1577
+ value: 66.04029135274683
1578
+ - task:
1579
+ type: Classification
1580
+ dataset:
1581
+ name: MTEB MassiveScenarioClassification (en)
1582
+ type: mteb/amazon_massive_scenario
1583
+ config: en
1584
+ split: test
1585
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1586
+ metrics:
1587
+ - type: accuracy
1588
+ value: 73.81977135171486
1589
+ - type: f1
1590
+ value: 74.10477122507747
1591
+ - task:
1592
+ type: Classification
1593
+ dataset:
1594
+ name: MTEB MassiveScenarioClassification (es)
1595
+ type: mteb/amazon_massive_scenario
1596
+ config: es
1597
+ split: test
1598
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1599
+ metrics:
1600
+ - type: accuracy
1601
+ value: 71.23402824478816
1602
+ - type: f1
1603
+ value: 71.75572665880296
1604
+ - task:
1605
+ type: Clustering
1606
+ dataset:
1607
+ name: MTEB MedrxivClusteringP2P
1608
+ type: mteb/medrxiv-clustering-p2p
1609
+ config: default
1610
+ split: test
1611
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1612
+ metrics:
1613
+ - type: v_measure
1614
+ value: 32.189750849969215
1615
+ - task:
1616
+ type: Clustering
1617
+ dataset:
1618
+ name: MTEB MedrxivClusteringS2S
1619
+ type: mteb/medrxiv-clustering-s2s
1620
+ config: default
1621
+ split: test
1622
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1623
+ metrics:
1624
+ - type: v_measure
1625
+ value: 28.78357393555938
1626
+ - task:
1627
+ type: Reranking
1628
+ dataset:
1629
+ name: MTEB MindSmallReranking
1630
+ type: mteb/mind_small
1631
+ config: default
1632
+ split: test
1633
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1634
+ metrics:
1635
+ - type: map
1636
+ value: 30.605612998328358
1637
+ - type: mrr
1638
+ value: 31.595529205695833
1639
+ - task:
1640
+ type: Retrieval
1641
+ dataset:
1642
+ name: MTEB MintakaESRetrieval
1643
+ type: jinaai/mintakaqa
1644
+ config: default
1645
+ split: test
1646
+ revision: None
1647
+ metrics:
1648
+ - type: map_at_1
1649
+ value: 16.213
1650
+ - type: map_at_10
1651
+ value: 24.079
1652
+ - type: map_at_100
1653
+ value: 25.039
1654
+ - type: map_at_1000
1655
+ value: 25.142999999999997
1656
+ - type: map_at_3
1657
+ value: 21.823
1658
+ - type: map_at_5
1659
+ value: 23.069
1660
+ - type: mrr_at_1
1661
+ value: 16.213
1662
+ - type: mrr_at_10
1663
+ value: 24.079
1664
+ - type: mrr_at_100
1665
+ value: 25.039
1666
+ - type: mrr_at_1000
1667
+ value: 25.142999999999997
1668
+ - type: mrr_at_3
1669
+ value: 21.823
1670
+ - type: mrr_at_5
1671
+ value: 23.069
1672
+ - type: ndcg_at_1
1673
+ value: 16.213
1674
+ - type: ndcg_at_10
1675
+ value: 28.315
1676
+ - type: ndcg_at_100
1677
+ value: 33.475
1678
+ - type: ndcg_at_1000
1679
+ value: 36.838
1680
+ - type: ndcg_at_3
1681
+ value: 23.627000000000002
1682
+ - type: ndcg_at_5
1683
+ value: 25.879
1684
+ - type: precision_at_1
1685
+ value: 16.213
1686
+ - type: precision_at_10
1687
+ value: 4.183
1688
+ - type: precision_at_100
1689
+ value: 0.6709999999999999
1690
+ - type: precision_at_1000
1691
+ value: 0.095
1692
+ - type: precision_at_3
1693
+ value: 9.612
1694
+ - type: precision_at_5
1695
+ value: 6.865
1696
+ - type: recall_at_1
1697
+ value: 16.213
1698
+ - type: recall_at_10
1699
+ value: 41.832
1700
+ - type: recall_at_100
1701
+ value: 67.12
1702
+ - type: recall_at_1000
1703
+ value: 94.843
1704
+ - type: recall_at_3
1705
+ value: 28.837000000000003
1706
+ - type: recall_at_5
1707
+ value: 34.323
1708
+ - task:
1709
+ type: Retrieval
1710
+ dataset:
1711
+ name: MTEB NFCorpus
1712
+ type: nfcorpus
1713
+ config: default
1714
+ split: test
1715
+ revision: None
1716
+ metrics:
1717
+ - type: map_at_1
1718
+ value: 4.692
1719
+ - type: map_at_10
1720
+ value: 10.783
1721
+ - type: map_at_100
1722
+ value: 13.447999999999999
1723
+ - type: map_at_1000
1724
+ value: 14.756
1725
+ - type: map_at_3
1726
+ value: 7.646
1727
+ - type: map_at_5
1728
+ value: 9.311
1729
+ - type: mrr_at_1
1730
+ value: 42.415000000000006
1731
+ - type: mrr_at_10
1732
+ value: 50.471
1733
+ - type: mrr_at_100
1734
+ value: 51.251999999999995
1735
+ - type: mrr_at_1000
1736
+ value: 51.292
1737
+ - type: mrr_at_3
1738
+ value: 48.4
1739
+ - type: mrr_at_5
1740
+ value: 49.809
1741
+ - type: ndcg_at_1
1742
+ value: 40.867
1743
+ - type: ndcg_at_10
1744
+ value: 30.303
1745
+ - type: ndcg_at_100
1746
+ value: 27.915
1747
+ - type: ndcg_at_1000
1748
+ value: 36.734
1749
+ - type: ndcg_at_3
1750
+ value: 35.74
1751
+ - type: ndcg_at_5
1752
+ value: 33.938
1753
+ - type: precision_at_1
1754
+ value: 42.415000000000006
1755
+ - type: precision_at_10
1756
+ value: 22.105
1757
+ - type: precision_at_100
1758
+ value: 7.173
1759
+ - type: precision_at_1000
1760
+ value: 2.007
1761
+ - type: precision_at_3
1762
+ value: 33.437
1763
+ - type: precision_at_5
1764
+ value: 29.349999999999998
1765
+ - type: recall_at_1
1766
+ value: 4.692
1767
+ - type: recall_at_10
1768
+ value: 14.798
1769
+ - type: recall_at_100
1770
+ value: 28.948
1771
+ - type: recall_at_1000
1772
+ value: 59.939
1773
+ - type: recall_at_3
1774
+ value: 8.562
1775
+ - type: recall_at_5
1776
+ value: 11.818
1777
+ - task:
1778
+ type: Retrieval
1779
+ dataset:
1780
+ name: MTEB NQ
1781
+ type: nq
1782
+ config: default
1783
+ split: test
1784
+ revision: None
1785
+ metrics:
1786
+ - type: map_at_1
1787
+ value: 27.572999999999997
1788
+ - type: map_at_10
1789
+ value: 42.754
1790
+ - type: map_at_100
1791
+ value: 43.8
1792
+ - type: map_at_1000
1793
+ value: 43.838
1794
+ - type: map_at_3
1795
+ value: 38.157000000000004
1796
+ - type: map_at_5
1797
+ value: 40.9
1798
+ - type: mrr_at_1
1799
+ value: 31.373
1800
+ - type: mrr_at_10
1801
+ value: 45.321
1802
+ - type: mrr_at_100
1803
+ value: 46.109
1804
+ - type: mrr_at_1000
1805
+ value: 46.135
1806
+ - type: mrr_at_3
1807
+ value: 41.483
1808
+ - type: mrr_at_5
1809
+ value: 43.76
1810
+ - type: ndcg_at_1
1811
+ value: 31.373
1812
+ - type: ndcg_at_10
1813
+ value: 50.7
1814
+ - type: ndcg_at_100
1815
+ value: 55.103
1816
+ - type: ndcg_at_1000
1817
+ value: 55.955999999999996
1818
+ - type: ndcg_at_3
1819
+ value: 42.069
1820
+ - type: ndcg_at_5
1821
+ value: 46.595
1822
+ - type: precision_at_1
1823
+ value: 31.373
1824
+ - type: precision_at_10
1825
+ value: 8.601
1826
+ - type: precision_at_100
1827
+ value: 1.11
1828
+ - type: precision_at_1000
1829
+ value: 0.11900000000000001
1830
+ - type: precision_at_3
1831
+ value: 19.399
1832
+ - type: precision_at_5
1833
+ value: 14.224
1834
+ - type: recall_at_1
1835
+ value: 27.572999999999997
1836
+ - type: recall_at_10
1837
+ value: 72.465
1838
+ - type: recall_at_100
1839
+ value: 91.474
1840
+ - type: recall_at_1000
1841
+ value: 97.78099999999999
1842
+ - type: recall_at_3
1843
+ value: 50.087
1844
+ - type: recall_at_5
1845
+ value: 60.516000000000005
1846
+ - task:
1847
+ type: Retrieval
1848
+ dataset:
1849
+ name: MTEB QuoraRetrieval
1850
+ type: quora
1851
+ config: default
1852
+ split: test
1853
+ revision: None
1854
+ metrics:
1855
+ - type: map_at_1
1856
+ value: 70.525
1857
+ - type: map_at_10
1858
+ value: 84.417
1859
+ - type: map_at_100
1860
+ value: 85.07000000000001
1861
+ - type: map_at_1000
1862
+ value: 85.085
1863
+ - type: map_at_3
1864
+ value: 81.45
1865
+ - type: map_at_5
1866
+ value: 83.317
1867
+ - type: mrr_at_1
1868
+ value: 81.17999999999999
1869
+ - type: mrr_at_10
1870
+ value: 87.34100000000001
1871
+ - type: mrr_at_100
1872
+ value: 87.461
1873
+ - type: mrr_at_1000
1874
+ value: 87.46199999999999
1875
+ - type: mrr_at_3
1876
+ value: 86.372
1877
+ - type: mrr_at_5
1878
+ value: 87.046
1879
+ - type: ndcg_at_1
1880
+ value: 81.17999999999999
1881
+ - type: ndcg_at_10
1882
+ value: 88.144
1883
+ - type: ndcg_at_100
1884
+ value: 89.424
1885
+ - type: ndcg_at_1000
1886
+ value: 89.517
1887
+ - type: ndcg_at_3
1888
+ value: 85.282
1889
+ - type: ndcg_at_5
1890
+ value: 86.874
1891
+ - type: precision_at_1
1892
+ value: 81.17999999999999
1893
+ - type: precision_at_10
1894
+ value: 13.385
1895
+ - type: precision_at_100
1896
+ value: 1.533
1897
+ - type: precision_at_1000
1898
+ value: 0.157
1899
+ - type: precision_at_3
1900
+ value: 37.29
1901
+ - type: precision_at_5
1902
+ value: 24.546
1903
+ - type: recall_at_1
1904
+ value: 70.525
1905
+ - type: recall_at_10
1906
+ value: 95.22500000000001
1907
+ - type: recall_at_100
1908
+ value: 99.572
1909
+ - type: recall_at_1000
1910
+ value: 99.98899999999999
1911
+ - type: recall_at_3
1912
+ value: 87.035
1913
+ - type: recall_at_5
1914
+ value: 91.526
1915
+ - task:
1916
+ type: Clustering
1917
+ dataset:
1918
+ name: MTEB RedditClustering
1919
+ type: mteb/reddit-clustering
1920
+ config: default
1921
+ split: test
1922
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1923
+ metrics:
1924
+ - type: v_measure
1925
+ value: 48.284384328108736
1926
+ - task:
1927
+ type: Clustering
1928
+ dataset:
1929
+ name: MTEB RedditClusteringP2P
1930
+ type: mteb/reddit-clustering-p2p
1931
+ config: default
1932
+ split: test
1933
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1934
+ metrics:
1935
+ - type: v_measure
1936
+ value: 56.02508021518392
1937
+ - task:
1938
+ type: Retrieval
1939
+ dataset:
1940
+ name: MTEB SCIDOCS
1941
+ type: scidocs
1942
+ config: default
1943
+ split: test
1944
+ revision: None
1945
+ metrics:
1946
+ - type: map_at_1
1947
+ value: 4.023000000000001
1948
+ - type: map_at_10
1949
+ value: 10.046
1950
+ - type: map_at_100
1951
+ value: 11.802999999999999
1952
+ - type: map_at_1000
1953
+ value: 12.074
1954
+ - type: map_at_3
1955
+ value: 7.071
1956
+ - type: map_at_5
1957
+ value: 8.556
1958
+ - type: mrr_at_1
1959
+ value: 19.8
1960
+ - type: mrr_at_10
1961
+ value: 30.105999999999998
1962
+ - type: mrr_at_100
1963
+ value: 31.16
1964
+ - type: mrr_at_1000
1965
+ value: 31.224
1966
+ - type: mrr_at_3
1967
+ value: 26.633000000000003
1968
+ - type: mrr_at_5
1969
+ value: 28.768
1970
+ - type: ndcg_at_1
1971
+ value: 19.8
1972
+ - type: ndcg_at_10
1973
+ value: 17.358
1974
+ - type: ndcg_at_100
1975
+ value: 24.566
1976
+ - type: ndcg_at_1000
1977
+ value: 29.653000000000002
1978
+ - type: ndcg_at_3
1979
+ value: 16.052
1980
+ - type: ndcg_at_5
1981
+ value: 14.325
1982
+ - type: precision_at_1
1983
+ value: 19.8
1984
+ - type: precision_at_10
1985
+ value: 9.07
1986
+ - type: precision_at_100
1987
+ value: 1.955
1988
+ - type: precision_at_1000
1989
+ value: 0.318
1990
+ - type: precision_at_3
1991
+ value: 14.933
1992
+ - type: precision_at_5
1993
+ value: 12.68
1994
+ - type: recall_at_1
1995
+ value: 4.023000000000001
1996
+ - type: recall_at_10
1997
+ value: 18.398
1998
+ - type: recall_at_100
1999
+ value: 39.683
2000
+ - type: recall_at_1000
2001
+ value: 64.625
2002
+ - type: recall_at_3
2003
+ value: 9.113
2004
+ - type: recall_at_5
2005
+ value: 12.873000000000001
2006
+ - task:
2007
+ type: STS
2008
+ dataset:
2009
+ name: MTEB SICK-R
2010
+ type: mteb/sickr-sts
2011
+ config: default
2012
+ split: test
2013
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
2014
+ metrics:
2015
+ - type: cos_sim_pearson
2016
+ value: 87.90508618312852
2017
+ - type: cos_sim_spearman
2018
+ value: 83.01323463129205
2019
+ - type: euclidean_pearson
2020
+ value: 84.35845059002891
2021
+ - type: euclidean_spearman
2022
+ value: 82.85508559018527
2023
+ - type: manhattan_pearson
2024
+ value: 84.3682368950498
2025
+ - type: manhattan_spearman
2026
+ value: 82.8619728517302
2027
+ - task:
2028
+ type: STS
2029
+ dataset:
2030
+ name: MTEB STS12
2031
+ type: mteb/sts12-sts
2032
+ config: default
2033
+ split: test
2034
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
2035
+ metrics:
2036
+ - type: cos_sim_pearson
2037
+ value: 89.28294535873366
2038
+ - type: cos_sim_spearman
2039
+ value: 81.61879268131732
2040
+ - type: euclidean_pearson
2041
+ value: 85.99053604863724
2042
+ - type: euclidean_spearman
2043
+ value: 80.95176684739084
2044
+ - type: manhattan_pearson
2045
+ value: 85.98054086663903
2046
+ - type: manhattan_spearman
2047
+ value: 80.9911070430335
2048
+ - task:
2049
+ type: STS
2050
+ dataset:
2051
+ name: MTEB STS13
2052
+ type: mteb/sts13-sts
2053
+ config: default
2054
+ split: test
2055
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
2056
+ metrics:
2057
+ - type: cos_sim_pearson
2058
+ value: 86.15898098455258
2059
+ - type: cos_sim_spearman
2060
+ value: 86.8247985072307
2061
+ - type: euclidean_pearson
2062
+ value: 86.25342429918649
2063
+ - type: euclidean_spearman
2064
+ value: 87.13468603023252
2065
+ - type: manhattan_pearson
2066
+ value: 86.2006134067688
2067
+ - type: manhattan_spearman
2068
+ value: 87.06135811996896
2069
+ - task:
2070
+ type: STS
2071
+ dataset:
2072
+ name: MTEB STS14
2073
+ type: mteb/sts14-sts
2074
+ config: default
2075
+ split: test
2076
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2077
+ metrics:
2078
+ - type: cos_sim_pearson
2079
+ value: 85.57403998481877
2080
+ - type: cos_sim_spearman
2081
+ value: 83.55947075172618
2082
+ - type: euclidean_pearson
2083
+ value: 84.97097562965358
2084
+ - type: euclidean_spearman
2085
+ value: 83.6287075601467
2086
+ - type: manhattan_pearson
2087
+ value: 84.87092197104133
2088
+ - type: manhattan_spearman
2089
+ value: 83.53783891641335
2090
+ - task:
2091
+ type: STS
2092
+ dataset:
2093
+ name: MTEB STS15
2094
+ type: mteb/sts15-sts
2095
+ config: default
2096
+ split: test
2097
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2098
+ metrics:
2099
+ - type: cos_sim_pearson
2100
+ value: 88.14632780204231
2101
+ - type: cos_sim_spearman
2102
+ value: 88.74903634923868
2103
+ - type: euclidean_pearson
2104
+ value: 88.03922995855112
2105
+ - type: euclidean_spearman
2106
+ value: 88.72852190525855
2107
+ - type: manhattan_pearson
2108
+ value: 87.9694791024271
2109
+ - type: manhattan_spearman
2110
+ value: 88.66461452107418
2111
+ - task:
2112
+ type: STS
2113
+ dataset:
2114
+ name: MTEB STS16
2115
+ type: mteb/sts16-sts
2116
+ config: default
2117
+ split: test
2118
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2119
+ metrics:
2120
+ - type: cos_sim_pearson
2121
+ value: 84.75989818558652
2122
+ - type: cos_sim_spearman
2123
+ value: 86.03107893122942
2124
+ - type: euclidean_pearson
2125
+ value: 85.21908960133018
2126
+ - type: euclidean_spearman
2127
+ value: 85.93012720153482
2128
+ - type: manhattan_pearson
2129
+ value: 85.1969170195502
2130
+ - type: manhattan_spearman
2131
+ value: 85.8975254197784
2132
+ - task:
2133
+ type: STS
2134
+ dataset:
2135
+ name: MTEB STS17 (en-en)
2136
+ type: mteb/sts17-crosslingual-sts
2137
+ config: en-en
2138
+ split: test
2139
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2140
+ metrics:
2141
+ - type: cos_sim_pearson
2142
+ value: 89.16803898789955
2143
+ - type: cos_sim_spearman
2144
+ value: 88.56139047950525
2145
+ - type: euclidean_pearson
2146
+ value: 88.09685325747859
2147
+ - type: euclidean_spearman
2148
+ value: 88.0457609458947
2149
+ - type: manhattan_pearson
2150
+ value: 88.07054413001431
2151
+ - type: manhattan_spearman
2152
+ value: 88.10784098889314
2153
+ - task:
2154
+ type: STS
2155
+ dataset:
2156
+ name: MTEB STS17 (es-en)
2157
+ type: mteb/sts17-crosslingual-sts
2158
+ config: es-en
2159
+ split: test
2160
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2161
+ metrics:
2162
+ - type: cos_sim_pearson
2163
+ value: 86.7160384474547
2164
+ - type: cos_sim_spearman
2165
+ value: 86.4899235500562
2166
+ - type: euclidean_pearson
2167
+ value: 85.90854477703468
2168
+ - type: euclidean_spearman
2169
+ value: 86.16085009124498
2170
+ - type: manhattan_pearson
2171
+ value: 85.9249735317884
2172
+ - type: manhattan_spearman
2173
+ value: 86.25038421339116
2174
+ - task:
2175
+ type: STS
2176
+ dataset:
2177
+ name: MTEB STS17 (es-es)
2178
+ type: mteb/sts17-crosslingual-sts
2179
+ config: es-es
2180
+ split: test
2181
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2182
+ metrics:
2183
+ - type: cos_sim_pearson
2184
+ value: 89.37914622360788
2185
+ - type: cos_sim_spearman
2186
+ value: 88.24619159322809
2187
+ - type: euclidean_pearson
2188
+ value: 89.00538382632769
2189
+ - type: euclidean_spearman
2190
+ value: 88.44675863524736
2191
+ - type: manhattan_pearson
2192
+ value: 88.97372120683606
2193
+ - type: manhattan_spearman
2194
+ value: 88.33509324222129
2195
+ - task:
2196
+ type: STS
2197
+ dataset:
2198
+ name: MTEB STS22 (en)
2199
+ type: mteb/sts22-crosslingual-sts
2200
+ config: en
2201
+ split: test
2202
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2203
+ metrics:
2204
+ - type: cos_sim_pearson
2205
+ value: 66.22181360203069
2206
+ - type: cos_sim_spearman
2207
+ value: 65.6218291833768
2208
+ - type: euclidean_pearson
2209
+ value: 67.14543788822508
2210
+ - type: euclidean_spearman
2211
+ value: 65.21269939987857
2212
+ - type: manhattan_pearson
2213
+ value: 67.03304607195636
2214
+ - type: manhattan_spearman
2215
+ value: 65.18885316423805
2216
+ - task:
2217
+ type: STS
2218
+ dataset:
2219
+ name: MTEB STS22 (es)
2220
+ type: mteb/sts22-crosslingual-sts
2221
+ config: es
2222
+ split: test
2223
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2224
+ metrics:
2225
+ - type: cos_sim_pearson
2226
+ value: 65.71694059677084
2227
+ - type: cos_sim_spearman
2228
+ value: 67.96591844540954
2229
+ - type: euclidean_pearson
2230
+ value: 65.6964079162296
2231
+ - type: euclidean_spearman
2232
+ value: 67.53027948900173
2233
+ - type: manhattan_pearson
2234
+ value: 65.93545097673741
2235
+ - type: manhattan_spearman
2236
+ value: 67.7261811805062
2237
+ - task:
2238
+ type: STS
2239
+ dataset:
2240
+ name: MTEB STS22 (es-en)
2241
+ type: mteb/sts22-crosslingual-sts
2242
+ config: es-en
2243
+ split: test
2244
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2245
+ metrics:
2246
+ - type: cos_sim_pearson
2247
+ value: 75.43544796375058
2248
+ - type: cos_sim_spearman
2249
+ value: 78.80462701160789
2250
+ - type: euclidean_pearson
2251
+ value: 76.19135575163138
2252
+ - type: euclidean_spearman
2253
+ value: 78.4974732597096
2254
+ - type: manhattan_pearson
2255
+ value: 76.3254742699264
2256
+ - type: manhattan_spearman
2257
+ value: 78.51884307690416
2258
+ - task:
2259
+ type: STS
2260
+ dataset:
2261
+ name: MTEB STSBenchmark
2262
+ type: mteb/stsbenchmark-sts
2263
+ config: default
2264
+ split: test
2265
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2266
+ metrics:
2267
+ - type: cos_sim_pearson
2268
+ value: 87.46805293607684
2269
+ - type: cos_sim_spearman
2270
+ value: 87.83792784689113
2271
+ - type: euclidean_pearson
2272
+ value: 87.3872143683234
2273
+ - type: euclidean_spearman
2274
+ value: 87.61611384542778
2275
+ - type: manhattan_pearson
2276
+ value: 87.38542672601992
2277
+ - type: manhattan_spearman
2278
+ value: 87.61423971087297
2279
+ - task:
2280
+ type: STS
2281
+ dataset:
2282
+ name: MTEB STSES
2283
+ type: PlanTL-GOB-ES/sts-es
2284
+ config: default
2285
+ split: test
2286
+ revision: 0912bb6c9393c76d62a7c5ee81c4c817ff47c9f4
2287
+ metrics:
2288
+ - type: cos_sim_pearson
2289
+ value: 82.55286866116202
2290
+ - type: cos_sim_spearman
2291
+ value: 80.22150503320272
2292
+ - type: euclidean_pearson
2293
+ value: 83.27223445187087
2294
+ - type: euclidean_spearman
2295
+ value: 80.59078590992925
2296
+ - type: manhattan_pearson
2297
+ value: 83.23095887013197
2298
+ - type: manhattan_spearman
2299
+ value: 80.87994285189795
2300
+ - task:
2301
+ type: Reranking
2302
+ dataset:
2303
+ name: MTEB SciDocsRR
2304
+ type: mteb/scidocs-reranking
2305
+ config: default
2306
+ split: test
2307
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2308
+ metrics:
2309
+ - type: map
2310
+ value: 79.29717302265792
2311
+ - type: mrr
2312
+ value: 94.02156304117088
2313
+ - task:
2314
+ type: Retrieval
2315
+ dataset:
2316
+ name: MTEB SciFact
2317
+ type: scifact
2318
+ config: default
2319
+ split: test
2320
+ revision: None
2321
+ metrics:
2322
+ - type: map_at_1
2323
+ value: 49.9
2324
+ - type: map_at_10
2325
+ value: 58.626
2326
+ - type: map_at_100
2327
+ value: 59.519999999999996
2328
+ - type: map_at_1000
2329
+ value: 59.55200000000001
2330
+ - type: map_at_3
2331
+ value: 56.232000000000006
2332
+ - type: map_at_5
2333
+ value: 57.833
2334
+ - type: mrr_at_1
2335
+ value: 52.333
2336
+ - type: mrr_at_10
2337
+ value: 60.039
2338
+ - type: mrr_at_100
2339
+ value: 60.732
2340
+ - type: mrr_at_1000
2341
+ value: 60.75899999999999
2342
+ - type: mrr_at_3
2343
+ value: 58.278
2344
+ - type: mrr_at_5
2345
+ value: 59.428000000000004
2346
+ - type: ndcg_at_1
2347
+ value: 52.333
2348
+ - type: ndcg_at_10
2349
+ value: 62.67
2350
+ - type: ndcg_at_100
2351
+ value: 66.465
2352
+ - type: ndcg_at_1000
2353
+ value: 67.425
2354
+ - type: ndcg_at_3
2355
+ value: 58.711999999999996
2356
+ - type: ndcg_at_5
2357
+ value: 60.958999999999996
2358
+ - type: precision_at_1
2359
+ value: 52.333
2360
+ - type: precision_at_10
2361
+ value: 8.333
2362
+ - type: precision_at_100
2363
+ value: 1.027
2364
+ - type: precision_at_1000
2365
+ value: 0.11100000000000002
2366
+ - type: precision_at_3
2367
+ value: 22.778000000000002
2368
+ - type: precision_at_5
2369
+ value: 15.267
2370
+ - type: recall_at_1
2371
+ value: 49.9
2372
+ - type: recall_at_10
2373
+ value: 73.394
2374
+ - type: recall_at_100
2375
+ value: 90.43299999999999
2376
+ - type: recall_at_1000
2377
+ value: 98.167
2378
+ - type: recall_at_3
2379
+ value: 63.032999999999994
2380
+ - type: recall_at_5
2381
+ value: 68.444
2382
+ - task:
2383
+ type: Clustering
2384
+ dataset:
2385
+ name: MTEB SpanishNewsClusteringP2P
2386
+ type: jinaai/spanish_news_clustering
2387
+ config: default
2388
+ split: test
2389
+ revision: b5edc3d3d7c12c7b9f883e9da50f6732f3624142
2390
+ metrics:
2391
+ - type: v_measure
2392
+ value: 48.30543557796266
2393
+ - task:
2394
+ type: Retrieval
2395
+ dataset:
2396
+ name: MTEB SpanishPassageRetrievalS2P
2397
+ type: jinaai/spanish_passage_retrieval
2398
+ config: default
2399
+ split: test
2400
+ revision: None
2401
+ metrics:
2402
+ - type: map_at_1
2403
+ value: 14.443
2404
+ - type: map_at_10
2405
+ value: 28.736
2406
+ - type: map_at_100
2407
+ value: 34.514
2408
+ - type: map_at_1000
2409
+ value: 35.004000000000005
2410
+ - type: map_at_3
2411
+ value: 20.308
2412
+ - type: map_at_5
2413
+ value: 25.404
2414
+ - type: mrr_at_1
2415
+ value: 50.29900000000001
2416
+ - type: mrr_at_10
2417
+ value: 63.757
2418
+ - type: mrr_at_100
2419
+ value: 64.238
2420
+ - type: mrr_at_1000
2421
+ value: 64.24600000000001
2422
+ - type: mrr_at_3
2423
+ value: 59.480999999999995
2424
+ - type: mrr_at_5
2425
+ value: 62.924
2426
+ - type: ndcg_at_1
2427
+ value: 50.29900000000001
2428
+ - type: ndcg_at_10
2429
+ value: 42.126999999999995
2430
+ - type: ndcg_at_100
2431
+ value: 57.208000000000006
2432
+ - type: ndcg_at_1000
2433
+ value: 60.646
2434
+ - type: ndcg_at_3
2435
+ value: 38.722
2436
+ - type: ndcg_at_5
2437
+ value: 40.007999999999996
2438
+ - type: precision_at_1
2439
+ value: 50.29900000000001
2440
+ - type: precision_at_10
2441
+ value: 19.82
2442
+ - type: precision_at_100
2443
+ value: 4.82
2444
+ - type: precision_at_1000
2445
+ value: 0.5910000000000001
2446
+ - type: precision_at_3
2447
+ value: 31.537
2448
+ - type: precision_at_5
2449
+ value: 28.262999999999998
2450
+ - type: recall_at_1
2451
+ value: 14.443
2452
+ - type: recall_at_10
2453
+ value: 43.885999999999996
2454
+ - type: recall_at_100
2455
+ value: 85.231
2456
+ - type: recall_at_1000
2457
+ value: 99.07000000000001
2458
+ - type: recall_at_3
2459
+ value: 22.486
2460
+ - type: recall_at_5
2461
+ value: 33.035
2462
+ - type: map_at_1
2463
+ value: 15.578
2464
+ - type: map_at_10
2465
+ value: 52.214000000000006
2466
+ - type: map_at_100
2467
+ value: 64.791
2468
+ - type: map_at_1000
2469
+ value: 64.791
2470
+ - type: map_at_3
2471
+ value: 33.396
2472
+ - type: map_at_5
2473
+ value: 41.728
2474
+ - type: mrr_at_1
2475
+ value: 73.653
2476
+ - type: mrr_at_10
2477
+ value: 85.116
2478
+ - type: mrr_at_100
2479
+ value: 85.205
2480
+ - type: mrr_at_1000
2481
+ value: 85.205
2482
+ - type: mrr_at_3
2483
+ value: 84.631
2484
+ - type: mrr_at_5
2485
+ value: 85.05
2486
+ - type: ndcg_at_1
2487
+ value: 76.64699999999999
2488
+ - type: ndcg_at_10
2489
+ value: 70.38600000000001
2490
+ - type: ndcg_at_100
2491
+ value: 82.27600000000001
2492
+ - type: ndcg_at_1000
2493
+ value: 82.27600000000001
2494
+ - type: ndcg_at_3
2495
+ value: 70.422
2496
+ - type: ndcg_at_5
2497
+ value: 69.545
2498
+ - type: precision_at_1
2499
+ value: 76.64699999999999
2500
+ - type: precision_at_10
2501
+ value: 43.653
2502
+ - type: precision_at_100
2503
+ value: 7.718999999999999
2504
+ - type: precision_at_1000
2505
+ value: 0.772
2506
+ - type: precision_at_3
2507
+ value: 64.671
2508
+ - type: precision_at_5
2509
+ value: 56.766000000000005
2510
+ - type: recall_at_1
2511
+ value: 15.578
2512
+ - type: recall_at_10
2513
+ value: 67.459
2514
+ - type: recall_at_100
2515
+ value: 100.0
2516
+ - type: recall_at_1000
2517
+ value: 100.0
2518
+ - type: recall_at_3
2519
+ value: 36.922
2520
+ - type: recall_at_5
2521
+ value: 49.424
2522
+ - task:
2523
+ type: PairClassification
2524
+ dataset:
2525
+ name: MTEB SprintDuplicateQuestions
2526
+ type: mteb/sprintduplicatequestions-pairclassification
2527
+ config: default
2528
+ split: test
2529
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2530
+ metrics:
2531
+ - type: cos_sim_accuracy
2532
+ value: 99.81683168316832
2533
+ - type: cos_sim_ap
2534
+ value: 95.61502659412484
2535
+ - type: cos_sim_f1
2536
+ value: 90.6813627254509
2537
+ - type: cos_sim_precision
2538
+ value: 90.86345381526104
2539
+ - type: cos_sim_recall
2540
+ value: 90.5
2541
+ - type: dot_accuracy
2542
+ value: 99.8039603960396
2543
+ - type: dot_ap
2544
+ value: 95.36783483182609
2545
+ - type: dot_f1
2546
+ value: 89.90825688073394
2547
+ - type: dot_precision
2548
+ value: 91.68399168399168
2549
+ - type: dot_recall
2550
+ value: 88.2
2551
+ - type: euclidean_accuracy
2552
+ value: 99.81188118811882
2553
+ - type: euclidean_ap
2554
+ value: 95.51583052324564
2555
+ - type: euclidean_f1
2556
+ value: 90.46214355948868
2557
+ - type: euclidean_precision
2558
+ value: 88.97485493230174
2559
+ - type: euclidean_recall
2560
+ value: 92.0
2561
+ - type: manhattan_accuracy
2562
+ value: 99.8079207920792
2563
+ - type: manhattan_ap
2564
+ value: 95.44030644653718
2565
+ - type: manhattan_f1
2566
+ value: 90.37698412698413
2567
+ - type: manhattan_precision
2568
+ value: 89.66535433070865
2569
+ - type: manhattan_recall
2570
+ value: 91.10000000000001
2571
+ - type: max_accuracy
2572
+ value: 99.81683168316832
2573
+ - type: max_ap
2574
+ value: 95.61502659412484
2575
+ - type: max_f1
2576
+ value: 90.6813627254509
2577
+ - task:
2578
+ type: Clustering
2579
+ dataset:
2580
+ name: MTEB StackExchangeClustering
2581
+ type: mteb/stackexchange-clustering
2582
+ config: default
2583
+ split: test
2584
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2585
+ metrics:
2586
+ - type: v_measure
2587
+ value: 55.39046705023096
2588
+ - task:
2589
+ type: Clustering
2590
+ dataset:
2591
+ name: MTEB StackExchangeClusteringP2P
2592
+ type: mteb/stackexchange-clustering-p2p
2593
+ config: default
2594
+ split: test
2595
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2596
+ metrics:
2597
+ - type: v_measure
2598
+ value: 33.57429225651293
2599
+ - task:
2600
+ type: Reranking
2601
+ dataset:
2602
+ name: MTEB StackOverflowDupQuestions
2603
+ type: mteb/stackoverflowdupquestions-reranking
2604
+ config: default
2605
+ split: test
2606
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2607
+ metrics:
2608
+ - type: map
2609
+ value: 50.17622570658746
2610
+ - type: mrr
2611
+ value: 50.99844293778118
2612
+ - task:
2613
+ type: Summarization
2614
+ dataset:
2615
+ name: MTEB SummEval
2616
+ type: mteb/summeval
2617
+ config: default
2618
+ split: test
2619
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2620
+ metrics:
2621
+ - type: cos_sim_pearson
2622
+ value: 29.97416289382191
2623
+ - type: cos_sim_spearman
2624
+ value: 29.871890597161432
2625
+ - type: dot_pearson
2626
+ value: 28.768845892613644
2627
+ - type: dot_spearman
2628
+ value: 28.872458999448686
2629
+ - task:
2630
+ type: Retrieval
2631
+ dataset:
2632
+ name: MTEB TRECCOVID
2633
+ type: trec-covid
2634
+ config: default
2635
+ split: test
2636
+ revision: None
2637
+ metrics:
2638
+ - type: map_at_1
2639
+ value: 0.22599999999999998
2640
+ - type: map_at_10
2641
+ value: 1.646
2642
+ - type: map_at_100
2643
+ value: 9.491
2644
+ - type: map_at_1000
2645
+ value: 23.75
2646
+ - type: map_at_3
2647
+ value: 0.588
2648
+ - type: map_at_5
2649
+ value: 0.9129999999999999
2650
+ - type: mrr_at_1
2651
+ value: 84.0
2652
+ - type: mrr_at_10
2653
+ value: 89.889
2654
+ - type: mrr_at_100
2655
+ value: 89.889
2656
+ - type: mrr_at_1000
2657
+ value: 89.889
2658
+ - type: mrr_at_3
2659
+ value: 89.667
2660
+ - type: mrr_at_5
2661
+ value: 89.667
2662
+ - type: ndcg_at_1
2663
+ value: 75.0
2664
+ - type: ndcg_at_10
2665
+ value: 67.368
2666
+ - type: ndcg_at_100
2667
+ value: 52.834
2668
+ - type: ndcg_at_1000
2669
+ value: 49.144
2670
+ - type: ndcg_at_3
2671
+ value: 72.866
2672
+ - type: ndcg_at_5
2673
+ value: 70.16
2674
+ - type: precision_at_1
2675
+ value: 84.0
2676
+ - type: precision_at_10
2677
+ value: 71.8
2678
+ - type: precision_at_100
2679
+ value: 54.04
2680
+ - type: precision_at_1000
2681
+ value: 21.709999999999997
2682
+ - type: precision_at_3
2683
+ value: 77.333
2684
+ - type: precision_at_5
2685
+ value: 74.0
2686
+ - type: recall_at_1
2687
+ value: 0.22599999999999998
2688
+ - type: recall_at_10
2689
+ value: 1.9029999999999998
2690
+ - type: recall_at_100
2691
+ value: 13.012
2692
+ - type: recall_at_1000
2693
+ value: 46.105000000000004
2694
+ - type: recall_at_3
2695
+ value: 0.63
2696
+ - type: recall_at_5
2697
+ value: 1.0030000000000001
2698
+ - task:
2699
+ type: Retrieval
2700
+ dataset:
2701
+ name: MTEB Touche2020
2702
+ type: webis-touche2020
2703
+ config: default
2704
+ split: test
2705
+ revision: None
2706
+ metrics:
2707
+ - type: map_at_1
2708
+ value: 1.5
2709
+ - type: map_at_10
2710
+ value: 8.193999999999999
2711
+ - type: map_at_100
2712
+ value: 14.01
2713
+ - type: map_at_1000
2714
+ value: 15.570999999999998
2715
+ - type: map_at_3
2716
+ value: 4.361000000000001
2717
+ - type: map_at_5
2718
+ value: 5.9270000000000005
2719
+ - type: mrr_at_1
2720
+ value: 16.326999999999998
2721
+ - type: mrr_at_10
2722
+ value: 33.326
2723
+ - type: mrr_at_100
2724
+ value: 34.592
2725
+ - type: mrr_at_1000
2726
+ value: 34.592
2727
+ - type: mrr_at_3
2728
+ value: 29.252
2729
+ - type: mrr_at_5
2730
+ value: 30.680000000000003
2731
+ - type: ndcg_at_1
2732
+ value: 15.306000000000001
2733
+ - type: ndcg_at_10
2734
+ value: 19.819
2735
+ - type: ndcg_at_100
2736
+ value: 33.428000000000004
2737
+ - type: ndcg_at_1000
2738
+ value: 45.024
2739
+ - type: ndcg_at_3
2740
+ value: 19.667
2741
+ - type: ndcg_at_5
2742
+ value: 19.625
2743
+ - type: precision_at_1
2744
+ value: 16.326999999999998
2745
+ - type: precision_at_10
2746
+ value: 18.367
2747
+ - type: precision_at_100
2748
+ value: 7.367
2749
+ - type: precision_at_1000
2750
+ value: 1.496
2751
+ - type: precision_at_3
2752
+ value: 23.128999999999998
2753
+ - type: precision_at_5
2754
+ value: 21.633
2755
+ - type: recall_at_1
2756
+ value: 1.5
2757
+ - type: recall_at_10
2758
+ value: 14.362
2759
+ - type: recall_at_100
2760
+ value: 45.842
2761
+ - type: recall_at_1000
2762
+ value: 80.42
2763
+ - type: recall_at_3
2764
+ value: 5.99
2765
+ - type: recall_at_5
2766
+ value: 8.701
2767
+ - task:
2768
+ type: Classification
2769
+ dataset:
2770
+ name: MTEB ToxicConversationsClassification
2771
+ type: mteb/toxic_conversations_50k
2772
+ config: default
2773
+ split: test
2774
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2775
+ metrics:
2776
+ - type: accuracy
2777
+ value: 70.04740000000001
2778
+ - type: ap
2779
+ value: 13.58661943759992
2780
+ - type: f1
2781
+ value: 53.727487131754195
2782
+ - task:
2783
+ type: Classification
2784
+ dataset:
2785
+ name: MTEB TweetSentimentExtractionClassification
2786
+ type: mteb/tweet_sentiment_extraction
2787
+ config: default
2788
+ split: test
2789
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2790
+ metrics:
2791
+ - type: accuracy
2792
+ value: 61.06395019807584
2793
+ - type: f1
2794
+ value: 61.36753664680866
2795
+ - task:
2796
+ type: Clustering
2797
+ dataset:
2798
+ name: MTEB TwentyNewsgroupsClustering
2799
+ type: mteb/twentynewsgroups-clustering
2800
+ config: default
2801
+ split: test
2802
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2803
+ metrics:
2804
+ - type: v_measure
2805
+ value: 40.19881263066229
2806
+ - task:
2807
+ type: PairClassification
2808
+ dataset:
2809
+ name: MTEB TwitterSemEval2015
2810
+ type: mteb/twittersemeval2015-pairclassification
2811
+ config: default
2812
+ split: test
2813
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2814
+ metrics:
2815
+ - type: cos_sim_accuracy
2816
+ value: 85.19401561661799
2817
+ - type: cos_sim_ap
2818
+ value: 71.62462506173092
2819
+ - type: cos_sim_f1
2820
+ value: 66.0641327225455
2821
+ - type: cos_sim_precision
2822
+ value: 62.234662934453
2823
+ - type: cos_sim_recall
2824
+ value: 70.3957783641161
2825
+ - type: dot_accuracy
2826
+ value: 84.69333015437802
2827
+ - type: dot_ap
2828
+ value: 69.83805526490895
2829
+ - type: dot_f1
2830
+ value: 64.85446235265817
2831
+ - type: dot_precision
2832
+ value: 59.59328028293546
2833
+ - type: dot_recall
2834
+ value: 71.13456464379946
2835
+ - type: euclidean_accuracy
2836
+ value: 85.38475293556655
2837
+ - type: euclidean_ap
2838
+ value: 72.05594596250286
2839
+ - type: euclidean_f1
2840
+ value: 66.53543307086615
2841
+ - type: euclidean_precision
2842
+ value: 62.332872291378514
2843
+ - type: euclidean_recall
2844
+ value: 71.34564643799473
2845
+ - type: manhattan_accuracy
2846
+ value: 85.3907134767837
2847
+ - type: manhattan_ap
2848
+ value: 72.04585410650152
2849
+ - type: manhattan_f1
2850
+ value: 66.57132642116554
2851
+ - type: manhattan_precision
2852
+ value: 60.704194740273856
2853
+ - type: manhattan_recall
2854
+ value: 73.6939313984169
2855
+ - type: max_accuracy
2856
+ value: 85.3907134767837
2857
+ - type: max_ap
2858
+ value: 72.05594596250286
2859
+ - type: max_f1
2860
+ value: 66.57132642116554
2861
+ - task:
2862
+ type: PairClassification
2863
+ dataset:
2864
+ name: MTEB TwitterURLCorpus
2865
+ type: mteb/twitterurlcorpus-pairclassification
2866
+ config: default
2867
+ split: test
2868
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2869
+ metrics:
2870
+ - type: cos_sim_accuracy
2871
+ value: 89.30414871735165
2872
+ - type: cos_sim_ap
2873
+ value: 86.4398673359918
2874
+ - type: cos_sim_f1
2875
+ value: 78.9243598692186
2876
+ - type: cos_sim_precision
2877
+ value: 75.47249350101876
2878
+ - type: cos_sim_recall
2879
+ value: 82.7071142593163
2880
+ - type: dot_accuracy
2881
+ value: 89.26145845461248
2882
+ - type: dot_ap
2883
+ value: 86.32172118414802
2884
+ - type: dot_f1
2885
+ value: 78.8277467755645
2886
+ - type: dot_precision
2887
+ value: 75.79418662497335
2888
+ - type: dot_recall
2889
+ value: 82.11425931629196
2890
+ - type: euclidean_accuracy
2891
+ value: 89.24205378973105
2892
+ - type: euclidean_ap
2893
+ value: 86.23988673522649
2894
+ - type: euclidean_f1
2895
+ value: 78.67984857951413
2896
+ - type: euclidean_precision
2897
+ value: 75.2689684269742
2898
+ - type: euclidean_recall
2899
+ value: 82.41453649522637
2900
+ - type: manhattan_accuracy
2901
+ value: 89.18189932859859
2902
+ - type: manhattan_ap
2903
+ value: 86.21003833972824
2904
+ - type: manhattan_f1
2905
+ value: 78.70972564850115
2906
+ - type: manhattan_precision
2907
+ value: 76.485544094145
2908
+ - type: manhattan_recall
2909
+ value: 81.0671388974438
2910
+ - type: max_accuracy
2911
+ value: 89.30414871735165
2912
+ - type: max_ap
2913
+ value: 86.4398673359918
2914
+ - type: max_f1
2915
+ value: 78.9243598692186
2916
+ - task:
2917
+ type: Clustering
2918
+ dataset:
2919
+ name: MTEB WikiCitiesClustering
2920
+ type: jinaai/cities_wiki_clustering
2921
+ config: default
2922
+ split: test
2923
+ revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa
2924
+ metrics:
2925
+ - type: v_measure
2926
+ value: 73.254610626148
2927
+ - task:
2928
+ type: Retrieval
2929
+ dataset:
2930
+ name: MTEB XMarketES
2931
+ type: jinaai/xmarket_ml
2932
+ config: default
2933
+ split: test
2934
+ revision: 705db869e8107dfe6e34b832af90446e77d813e3
2935
+ metrics:
2936
+ - type: map_at_1
2937
+ value: 5.506
2938
+ - type: map_at_10
2939
+ value: 11.546
2940
+ - type: map_at_100
2941
+ value: 14.299999999999999
2942
+ - type: map_at_1000
2943
+ value: 15.146999999999998
2944
+ - type: map_at_3
2945
+ value: 8.748000000000001
2946
+ - type: map_at_5
2947
+ value: 10.036000000000001
2948
+ - type: mrr_at_1
2949
+ value: 17.902
2950
+ - type: mrr_at_10
2951
+ value: 25.698999999999998
2952
+ - type: mrr_at_100
2953
+ value: 26.634
2954
+ - type: mrr_at_1000
2955
+ value: 26.704
2956
+ - type: mrr_at_3
2957
+ value: 23.244999999999997
2958
+ - type: mrr_at_5
2959
+ value: 24.555
2960
+ - type: ndcg_at_1
2961
+ value: 17.902
2962
+ - type: ndcg_at_10
2963
+ value: 19.714000000000002
2964
+ - type: ndcg_at_100
2965
+ value: 25.363000000000003
2966
+ - type: ndcg_at_1000
2967
+ value: 30.903999999999996
2968
+ - type: ndcg_at_3
2969
+ value: 17.884
2970
+ - type: ndcg_at_5
2971
+ value: 18.462
2972
+ - type: precision_at_1
2973
+ value: 17.902
2974
+ - type: precision_at_10
2975
+ value: 10.467
2976
+ - type: precision_at_100
2977
+ value: 3.9699999999999998
2978
+ - type: precision_at_1000
2979
+ value: 1.1320000000000001
2980
+ - type: precision_at_3
2981
+ value: 14.387
2982
+ - type: precision_at_5
2983
+ value: 12.727
2984
+ - type: recall_at_1
2985
+ value: 5.506
2986
+ - type: recall_at_10
2987
+ value: 19.997999999999998
2988
+ - type: recall_at_100
2989
+ value: 42.947
2990
+ - type: recall_at_1000
2991
+ value: 67.333
2992
+ - type: recall_at_3
2993
+ value: 11.158
2994
+ - type: recall_at_5
2995
+ value: 14.577000000000002
2996
+ - task:
2997
+ type: Retrieval
2998
+ dataset:
2999
+ name: MTEB XPQAESRetrieval
3000
+ type: jinaai/xpqa
3001
+ config: default
3002
+ split: test
3003
+ revision: None
3004
+ metrics:
3005
+ - type: map_at_1
3006
+ value: 32.53
3007
+ - type: map_at_10
3008
+ value: 58.68600000000001
3009
+ - type: map_at_100
3010
+ value: 60.45399999999999
3011
+ - type: map_at_1000
3012
+ value: 60.51499999999999
3013
+ - type: map_at_3
3014
+ value: 50.356
3015
+ - type: map_at_5
3016
+ value: 55.98
3017
+ - type: mrr_at_1
3018
+ value: 61.791
3019
+ - type: mrr_at_10
3020
+ value: 68.952
3021
+ - type: mrr_at_100
3022
+ value: 69.524
3023
+ - type: mrr_at_1000
3024
+ value: 69.538
3025
+ - type: mrr_at_3
3026
+ value: 67.087
3027
+ - type: mrr_at_5
3028
+ value: 68.052
3029
+ - type: ndcg_at_1
3030
+ value: 61.791
3031
+ - type: ndcg_at_10
3032
+ value: 65.359
3033
+ - type: ndcg_at_100
3034
+ value: 70.95700000000001
3035
+ - type: ndcg_at_1000
3036
+ value: 71.881
3037
+ - type: ndcg_at_3
3038
+ value: 59.999
3039
+ - type: ndcg_at_5
3040
+ value: 61.316
3041
+ - type: precision_at_1
3042
+ value: 61.791
3043
+ - type: precision_at_10
3044
+ value: 18.184
3045
+ - type: precision_at_100
3046
+ value: 2.317
3047
+ - type: precision_at_1000
3048
+ value: 0.245
3049
+ - type: precision_at_3
3050
+ value: 42.203
3051
+ - type: precision_at_5
3052
+ value: 31.374999999999996
3053
+ - type: recall_at_1
3054
+ value: 32.53
3055
+ - type: recall_at_10
3056
+ value: 73.098
3057
+ - type: recall_at_100
3058
+ value: 94.029
3059
+ - type: recall_at_1000
3060
+ value: 99.842
3061
+ - type: recall_at_3
3062
+ value: 54.525
3063
+ - type: recall_at_5
3064
+ value: 63.796
3065
+ ---
3066
+
3067
+ # AndreasX/jina-embeddings-v2-base-es-Q2_K-GGUF
3068
+ This model was converted to GGUF format from [`jinaai/jina-embeddings-v2-base-es`](https://huggingface.co/jinaai/jina-embeddings-v2-base-es) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
3069
+ Refer to the [original model card](https://huggingface.co/jinaai/jina-embeddings-v2-base-es) for more details on the model.
3070
+
3071
+ ## Use with llama.cpp
3072
+ Install llama.cpp through brew (works on Mac and Linux)
3073
+
3074
+ ```bash
3075
+ brew install llama.cpp
3076
+
3077
+ ```
3078
+ Invoke the llama.cpp server or the CLI.
3079
+
3080
+ ### CLI:
3081
+ ```bash
3082
+ llama-cli --hf-repo AndreasX/jina-embeddings-v2-base-es-Q2_K-GGUF --hf-file jina-embeddings-v2-base-es-q2_k.gguf -p "The meaning to life and the universe is"
3083
+ ```
3084
+
3085
+ ### Server:
3086
+ ```bash
3087
+ llama-server --hf-repo AndreasX/jina-embeddings-v2-base-es-Q2_K-GGUF --hf-file jina-embeddings-v2-base-es-q2_k.gguf -c 2048
3088
+ ```
3089
+
3090
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
3091
+
3092
+ Step 1: Clone llama.cpp from GitHub.
3093
+ ```
3094
+ git clone https://github.com/ggerganov/llama.cpp
3095
+ ```
3096
+
3097
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
3098
+ ```
3099
+ cd llama.cpp && LLAMA_CURL=1 make
3100
+ ```
3101
+
3102
+ Step 3: Run inference through the main binary.
3103
+ ```
3104
+ ./llama-cli --hf-repo AndreasX/jina-embeddings-v2-base-es-Q2_K-GGUF --hf-file jina-embeddings-v2-base-es-q2_k.gguf -p "The meaning to life and the universe is"
3105
+ ```
3106
+ or
3107
+ ```
3108
+ ./llama-server --hf-repo AndreasX/jina-embeddings-v2-base-es-Q2_K-GGUF --hf-file jina-embeddings-v2-base-es-q2_k.gguf -c 2048
3109
+ ```