Ananthu357 commited on
Commit
2279130
1 Parent(s): 89faaba

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-large-en
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:453
13
+ - loss:CosineSimilarityLoss
14
+ widget:
15
+ - source_sentence: Termination notice
16
+ sentences:
17
+ - "having value more than Rs 20 crore and original period of completion 12 months\
18
+ \ or more, when there is no reduction in original scope of work by more than 10%,\
19
+ \ and no extension granted on either railway or Contractor\x92s account,"
20
+ - Special Conditions might exist in the contract and supersede the Standard General
21
+ Conditions.
22
+ - Subject to the provisions of the aforesaid Arbitration and Conciliation Act 1996
23
+ and the rules thereunder and relevant para of General Conditions of Contract
24
+ - source_sentence: Impact of breach of terms by subcontracting.
25
+ sentences:
26
+ - The contractor shall commence the works within 15 days after the receipt by him
27
+ of an order in wirting to this effect from the Engineer and shall proceed with
28
+ the same with due expection and without delay.
29
+ - Railway may, if satisfied that the works can be completed by the Contractor within
30
+ reasonable short time thereafter, allow the Contractor for further extension of
31
+ time (Proforma at Annexure-VII) as the Engineer may decide
32
+ - On first occasion of noticing exaggerated/ false measurement, Engineer shall recover
33
+ liquidated damages equal to 10% of claimed gross bill value.
34
+ - source_sentence: 'Place of Arbitration: The place of arbitration would be within
35
+ the geographical limits of the Division of the Railway'
36
+ sentences:
37
+ - the Railway may grant such extension or extensions of the completion date as may
38
+ be considered reasonable.
39
+ - Location for dispute resolution
40
+ - Any item of work carried out by the Contractor on the instructions of the Engineer
41
+ which is not included in the accepted Schedules of Rates shall be executed at
42
+ the rates set forth in the Schedule of Rates of Railway.
43
+ - source_sentence:         Special Conditions of Contract must be referred to while
44
+ executing the contract
45
+ sentences:
46
+ - a penal interest of 12% per annum shall be charged for the delay beyond 21(Twenty
47
+ one) days, i.e. from 22nd day after the date of issue of LOA. Further, if the
48
+ 60th day happens to be a declared holiday in the concerned office of the Railway,
49
+ submission of PG can be accepted on the next working day.
50
+ -         Contractor should finish the works according to Special conditions of
51
+ Contract.
52
+ - This explains the impact of breaching terms in subcontracting part.
53
+ - source_sentence: Additional documents involve General Conditions of Contract, Regulations
54
+ for Tenders and Contracts and Special Conditions of Contract.
55
+ sentences:
56
+ - "At the final stage of completion and commissioning of work, in case the contractor\x92\
57
+ s failure is limited to only some of the works costing not more than 2% of the\
58
+ \ original contract value,"
59
+ -         Any material found during excavation should be reported to the engineer.
60
+ -  If the Contractor shall be dissatisfied by reason of any decision of the Engineer's
61
+ representative, he shall be entitled to refer the matter to the Engineer who shall
62
+ there upon confirm or vary such decision.
63
+ ---
64
+
65
+ # SentenceTransformer based on BAAI/bge-large-en
66
+
67
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
68
+
69
+ ## Model Details
70
+
71
+ ### Model Description
72
+ - **Model Type:** Sentence Transformer
73
+ - **Base model:** [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) <!-- at revision abe7d9d814b775ca171121fb03f394dc42974275 -->
74
+ - **Maximum Sequence Length:** 512 tokens
75
+ - **Output Dimensionality:** 1024 tokens
76
+ - **Similarity Function:** Cosine Similarity
77
+ <!-- - **Training Dataset:** Unknown -->
78
+ <!-- - **Language:** Unknown -->
79
+ <!-- - **License:** Unknown -->
80
+
81
+ ### Model Sources
82
+
83
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
84
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
85
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
86
+
87
+ ### Full Model Architecture
88
+
89
+ ```
90
+ SentenceTransformer(
91
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
92
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
93
+ (2): Normalize()
94
+ )
95
+ ```
96
+
97
+ ## Usage
98
+
99
+ ### Direct Usage (Sentence Transformers)
100
+
101
+ First install the Sentence Transformers library:
102
+
103
+ ```bash
104
+ pip install -U sentence-transformers
105
+ ```
106
+
107
+ Then you can load this model and run inference.
108
+ ```python
109
+ from sentence_transformers import SentenceTransformer
110
+
111
+ # Download from the 🤗 Hub
112
+ model = SentenceTransformer("Ananthu357/Ananthus-BAAI-for-contracts5.0")
113
+ # Run inference
114
+ sentences = [
115
+ 'Additional documents involve General Conditions of Contract, Regulations for Tenders and Contracts and Special Conditions of Contract.',
116
+ "\xa0If the Contractor shall be dissatisfied by reason of any decision of the Engineer's representative, he shall be entitled to refer the matter to the Engineer who shall there upon confirm or vary such decision.",
117
+ 'At the final stage of completion and commissioning of work, in case the contractor\x92s failure is limited to only some of the works costing not more than 2% of the original contract value,',
118
+ ]
119
+ embeddings = model.encode(sentences)
120
+ print(embeddings.shape)
121
+ # [3, 1024]
122
+
123
+ # Get the similarity scores for the embeddings
124
+ similarities = model.similarity(embeddings, embeddings)
125
+ print(similarities.shape)
126
+ # [3, 3]
127
+ ```
128
+
129
+ <!--
130
+ ### Direct Usage (Transformers)
131
+
132
+ <details><summary>Click to see the direct usage in Transformers</summary>
133
+
134
+ </details>
135
+ -->
136
+
137
+ <!--
138
+ ### Downstream Usage (Sentence Transformers)
139
+
140
+ You can finetune this model on your own dataset.
141
+
142
+ <details><summary>Click to expand</summary>
143
+
144
+ </details>
145
+ -->
146
+
147
+ <!--
148
+ ### Out-of-Scope Use
149
+
150
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
151
+ -->
152
+
153
+ <!--
154
+ ## Bias, Risks and Limitations
155
+
156
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
157
+ -->
158
+
159
+ <!--
160
+ ### Recommendations
161
+
162
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
163
+ -->
164
+
165
+ ## Training Details
166
+
167
+ ### Training Hyperparameters
168
+ #### Non-Default Hyperparameters
169
+
170
+ - `eval_strategy`: steps
171
+ - `per_device_train_batch_size`: 16
172
+ - `per_device_eval_batch_size`: 16
173
+ - `num_train_epochs`: 25
174
+ - `warmup_ratio`: 0.1
175
+ - `fp16`: True
176
+ - `batch_sampler`: no_duplicates
177
+
178
+ #### All Hyperparameters
179
+ <details><summary>Click to expand</summary>
180
+
181
+ - `overwrite_output_dir`: False
182
+ - `do_predict`: False
183
+ - `eval_strategy`: steps
184
+ - `prediction_loss_only`: True
185
+ - `per_device_train_batch_size`: 16
186
+ - `per_device_eval_batch_size`: 16
187
+ - `per_gpu_train_batch_size`: None
188
+ - `per_gpu_eval_batch_size`: None
189
+ - `gradient_accumulation_steps`: 1
190
+ - `eval_accumulation_steps`: None
191
+ - `learning_rate`: 5e-05
192
+ - `weight_decay`: 0.0
193
+ - `adam_beta1`: 0.9
194
+ - `adam_beta2`: 0.999
195
+ - `adam_epsilon`: 1e-08
196
+ - `max_grad_norm`: 1.0
197
+ - `num_train_epochs`: 25
198
+ - `max_steps`: -1
199
+ - `lr_scheduler_type`: linear
200
+ - `lr_scheduler_kwargs`: {}
201
+ - `warmup_ratio`: 0.1
202
+ - `warmup_steps`: 0
203
+ - `log_level`: passive
204
+ - `log_level_replica`: warning
205
+ - `log_on_each_node`: True
206
+ - `logging_nan_inf_filter`: True
207
+ - `save_safetensors`: True
208
+ - `save_on_each_node`: False
209
+ - `save_only_model`: False
210
+ - `restore_callback_states_from_checkpoint`: False
211
+ - `no_cuda`: False
212
+ - `use_cpu`: False
213
+ - `use_mps_device`: False
214
+ - `seed`: 42
215
+ - `data_seed`: None
216
+ - `jit_mode_eval`: False
217
+ - `use_ipex`: False
218
+ - `bf16`: False
219
+ - `fp16`: True
220
+ - `fp16_opt_level`: O1
221
+ - `half_precision_backend`: auto
222
+ - `bf16_full_eval`: False
223
+ - `fp16_full_eval`: False
224
+ - `tf32`: None
225
+ - `local_rank`: 0
226
+ - `ddp_backend`: None
227
+ - `tpu_num_cores`: None
228
+ - `tpu_metrics_debug`: False
229
+ - `debug`: []
230
+ - `dataloader_drop_last`: False
231
+ - `dataloader_num_workers`: 0
232
+ - `dataloader_prefetch_factor`: None
233
+ - `past_index`: -1
234
+ - `disable_tqdm`: False
235
+ - `remove_unused_columns`: True
236
+ - `label_names`: None
237
+ - `load_best_model_at_end`: False
238
+ - `ignore_data_skip`: False
239
+ - `fsdp`: []
240
+ - `fsdp_min_num_params`: 0
241
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
242
+ - `fsdp_transformer_layer_cls_to_wrap`: None
243
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
244
+ - `deepspeed`: None
245
+ - `label_smoothing_factor`: 0.0
246
+ - `optim`: adamw_torch
247
+ - `optim_args`: None
248
+ - `adafactor`: False
249
+ - `group_by_length`: False
250
+ - `length_column_name`: length
251
+ - `ddp_find_unused_parameters`: None
252
+ - `ddp_bucket_cap_mb`: None
253
+ - `ddp_broadcast_buffers`: False
254
+ - `dataloader_pin_memory`: True
255
+ - `dataloader_persistent_workers`: False
256
+ - `skip_memory_metrics`: True
257
+ - `use_legacy_prediction_loop`: False
258
+ - `push_to_hub`: False
259
+ - `resume_from_checkpoint`: None
260
+ - `hub_model_id`: None
261
+ - `hub_strategy`: every_save
262
+ - `hub_private_repo`: False
263
+ - `hub_always_push`: False
264
+ - `gradient_checkpointing`: False
265
+ - `gradient_checkpointing_kwargs`: None
266
+ - `include_inputs_for_metrics`: False
267
+ - `eval_do_concat_batches`: True
268
+ - `fp16_backend`: auto
269
+ - `push_to_hub_model_id`: None
270
+ - `push_to_hub_organization`: None
271
+ - `mp_parameters`:
272
+ - `auto_find_batch_size`: False
273
+ - `full_determinism`: False
274
+ - `torchdynamo`: None
275
+ - `ray_scope`: last
276
+ - `ddp_timeout`: 1800
277
+ - `torch_compile`: False
278
+ - `torch_compile_backend`: None
279
+ - `torch_compile_mode`: None
280
+ - `dispatch_batches`: None
281
+ - `split_batches`: None
282
+ - `include_tokens_per_second`: False
283
+ - `include_num_input_tokens_seen`: False
284
+ - `neftune_noise_alpha`: None
285
+ - `optim_target_modules`: None
286
+ - `batch_eval_metrics`: False
287
+ - `batch_sampler`: no_duplicates
288
+ - `multi_dataset_batch_sampler`: proportional
289
+
290
+ </details>
291
+
292
+ ### Training Logs
293
+ | Epoch | Step | Training Loss | loss |
294
+ |:-------:|:----:|:-------------:|:------:|
295
+ | 3.3448 | 100 | 0.06 | 0.0540 |
296
+ | 6.6897 | 200 | 0.0084 | 0.0568 |
297
+ | 10.0345 | 300 | 0.0035 | 0.0548 |
298
+ | 13.3448 | 400 | 0.0018 | 0.0536 |
299
+ | 16.6897 | 500 | 0.0011 | 0.0548 |
300
+ | 20.0345 | 600 | 0.001 | 0.0553 |
301
+ | 23.3448 | 700 | 0.0009 | 0.0556 |
302
+ | 3.3448 | 100 | 0.0014 | 0.0578 |
303
+ | 6.6897 | 200 | 0.0038 | 0.0582 |
304
+ | 10.0345 | 300 | 0.0025 | 0.0623 |
305
+ | 13.3448 | 400 | 0.0014 | 0.0579 |
306
+ | 16.6897 | 500 | 0.0008 | 0.0582 |
307
+ | 20.0345 | 600 | 0.0006 | 0.0579 |
308
+ | 23.3448 | 700 | 0.0006 | 0.0585 |
309
+ | 3.3448 | 100 | 0.0029 | 0.0640 |
310
+ | 6.6897 | 200 | 0.0048 | 0.0561 |
311
+ | 10.0345 | 300 | 0.0018 | 0.0524 |
312
+ | 13.3448 | 400 | 0.001 | 0.0522 |
313
+ | 16.6897 | 500 | 0.0007 | 0.0514 |
314
+ | 20.0345 | 600 | 0.0005 | 0.0519 |
315
+ | 23.3448 | 700 | 0.0005 | 0.0522 |
316
+
317
+
318
+ ### Framework Versions
319
+ - Python: 3.10.12
320
+ - Sentence Transformers: 3.0.1
321
+ - Transformers: 4.41.2
322
+ - PyTorch: 2.3.0+cu121
323
+ - Accelerate: 0.31.0
324
+ - Datasets: 2.20.0
325
+ - Tokenizers: 0.19.1
326
+
327
+ ## Citation
328
+
329
+ ### BibTeX
330
+
331
+ #### Sentence Transformers
332
+ ```bibtex
333
+ @inproceedings{reimers-2019-sentence-bert,
334
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
335
+ author = "Reimers, Nils and Gurevych, Iryna",
336
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
337
+ month = "11",
338
+ year = "2019",
339
+ publisher = "Association for Computational Linguistics",
340
+ url = "https://arxiv.org/abs/1908.10084",
341
+ }
342
+ ```
343
+
344
+ <!--
345
+ ## Glossary
346
+
347
+ *Clearly define terms in order to be accessible across audiences.*
348
+ -->
349
+
350
+ <!--
351
+ ## Model Card Authors
352
+
353
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
354
+ -->
355
+
356
+ <!--
357
+ ## Model Card Contact
358
+
359
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
360
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-large-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b38d4df450e395ccddf4182115a220e9798a2de15ff5ef9595e7f5b977585f34
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff