Ananthu357
commited on
Commit
•
9b4c43d
1
Parent(s):
e5280d3
Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +345 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-large-en
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
pipeline_tag: sentence-similarity
|
7 |
+
tags:
|
8 |
+
- sentence-transformers
|
9 |
+
- sentence-similarity
|
10 |
+
- feature-extraction
|
11 |
+
- generated_from_trainer
|
12 |
+
- dataset_size:649
|
13 |
+
- loss:CosineSimilarityLoss
|
14 |
+
widget:
|
15 |
+
- source_sentence: Dispute resolution
|
16 |
+
sentences:
|
17 |
+
- Arbitration and Conciliation (Amendment) Act 2015, if they agree for such waiver
|
18 |
+
in writing, after dispute having arisen between them, in the format
|
19 |
+
- The Earnest Money shall be deposited in cash through e-payment gateway or as mentioned
|
20 |
+
in tender documents.
|
21 |
+
- of liquidated damages under this condition shall not exceed 5% of the contract
|
22 |
+
value
|
23 |
+
- source_sentence: Order of Precedence is the order with which preference should be
|
24 |
+
given to the documents.
|
25 |
+
sentences:
|
26 |
+
- the sand, stone, clay ballast, earth, trees, rock
|
27 |
+
- in case of any difference, contradiction, discrepancy, with regard to conditions
|
28 |
+
of tender/contract,
|
29 |
+
- If the tenderer(s) deliberately gives / give wrong information in his / their
|
30 |
+
tender or creates / create circumstances for the acceptance of his / their tender,
|
31 |
+
the Railway reserves the right to reject such tender at any stage.
|
32 |
+
- source_sentence: Does the contract document contain a 'third-party liability relationship'
|
33 |
+
provision?
|
34 |
+
sentences:
|
35 |
+
- The Contractor shall be responsible for all risk to the work and for trespass
|
36 |
+
and shall make good at his own expense all loss or damage whether to the works
|
37 |
+
themselves or to any other property of the Railway or the lives, persons or property
|
38 |
+
of other
|
39 |
+
- This program should indicate the time schedule for various work items in the form
|
40 |
+
of a Bar Chart/PERT/CPM.
|
41 |
+
- Completion indiacted by issuance of maintenance certifciate
|
42 |
+
- source_sentence: What is the impact of breaching the contract conditions on subcontracting?
|
43 |
+
sentences:
|
44 |
+
- Schedule of Rates
|
45 |
+
- What determines the completion of the contract.
|
46 |
+
- shall not assign or sublet the contract or any part thereof or allow any person
|
47 |
+
- source_sentence: Bonus for early completion of work
|
48 |
+
sentences:
|
49 |
+
- 'as to execution or quality of any work or material, or as to the measurements
|
50 |
+
of the works the decision of the Engineer thereon shall be final subject to the
|
51 |
+
appeal (within 7 days of such decision being intimated to the Contractor) to the
|
52 |
+
Chief Engineer '
|
53 |
+
- The maximum bonus shall be limited to 3% of original contract value.
|
54 |
+
- The Contractor shall indemnify and save harmless the Railway from and against
|
55 |
+
all actions, suit, proceedings, losses, costs, damages, charges, claims and demands
|
56 |
+
of every nature and description brought or recovered against the Railways by reason
|
57 |
+
of any act or omission of the Contractor, his agents or employees, in the execution
|
58 |
+
of the works or in his guarding of the same. All sums payable by way of compensation
|
59 |
+
under any of these conditions shall be considered as reasonable compensation to
|
60 |
+
be applied to the actual loss or damage sustained, and whether or not any damage
|
61 |
+
shall have been sustained.
|
62 |
+
---
|
63 |
+
|
64 |
+
# SentenceTransformer based on BAAI/bge-large-en
|
65 |
+
|
66 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
67 |
+
|
68 |
+
## Model Details
|
69 |
+
|
70 |
+
### Model Description
|
71 |
+
- **Model Type:** Sentence Transformer
|
72 |
+
- **Base model:** [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) <!-- at revision abe7d9d814b775ca171121fb03f394dc42974275 -->
|
73 |
+
- **Maximum Sequence Length:** 512 tokens
|
74 |
+
- **Output Dimensionality:** 1024 tokens
|
75 |
+
- **Similarity Function:** Cosine Similarity
|
76 |
+
<!-- - **Training Dataset:** Unknown -->
|
77 |
+
<!-- - **Language:** Unknown -->
|
78 |
+
<!-- - **License:** Unknown -->
|
79 |
+
|
80 |
+
### Model Sources
|
81 |
+
|
82 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
83 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
84 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
85 |
+
|
86 |
+
### Full Model Architecture
|
87 |
+
|
88 |
+
```
|
89 |
+
SentenceTransformer(
|
90 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
91 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
92 |
+
(2): Normalize()
|
93 |
+
)
|
94 |
+
```
|
95 |
+
|
96 |
+
## Usage
|
97 |
+
|
98 |
+
### Direct Usage (Sentence Transformers)
|
99 |
+
|
100 |
+
First install the Sentence Transformers library:
|
101 |
+
|
102 |
+
```bash
|
103 |
+
pip install -U sentence-transformers
|
104 |
+
```
|
105 |
+
|
106 |
+
Then you can load this model and run inference.
|
107 |
+
```python
|
108 |
+
from sentence_transformers import SentenceTransformer
|
109 |
+
|
110 |
+
# Download from the 🤗 Hub
|
111 |
+
model = SentenceTransformer("Ananthu357/Ananthus-BAAI-for-contracts11.0")
|
112 |
+
# Run inference
|
113 |
+
sentences = [
|
114 |
+
'Bonus for early completion of work',
|
115 |
+
'The maximum bonus shall be limited to 3% of original contract value.',
|
116 |
+
'The Contractor shall indemnify and save harmless the Railway from and against all actions, suit, proceedings, losses, costs, damages, charges, claims and demands of every nature and description brought or recovered against the Railways by reason of any act or omission of the Contractor, his agents or employees, in the execution of the works or in his guarding of the same. All sums payable by way of compensation under any of these conditions shall be considered as reasonable compensation to be applied to the actual loss or damage sustained, and whether or not any damage shall have been sustained.',
|
117 |
+
]
|
118 |
+
embeddings = model.encode(sentences)
|
119 |
+
print(embeddings.shape)
|
120 |
+
# [3, 1024]
|
121 |
+
|
122 |
+
# Get the similarity scores for the embeddings
|
123 |
+
similarities = model.similarity(embeddings, embeddings)
|
124 |
+
print(similarities.shape)
|
125 |
+
# [3, 3]
|
126 |
+
```
|
127 |
+
|
128 |
+
<!--
|
129 |
+
### Direct Usage (Transformers)
|
130 |
+
|
131 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
132 |
+
|
133 |
+
</details>
|
134 |
+
-->
|
135 |
+
|
136 |
+
<!--
|
137 |
+
### Downstream Usage (Sentence Transformers)
|
138 |
+
|
139 |
+
You can finetune this model on your own dataset.
|
140 |
+
|
141 |
+
<details><summary>Click to expand</summary>
|
142 |
+
|
143 |
+
</details>
|
144 |
+
-->
|
145 |
+
|
146 |
+
<!--
|
147 |
+
### Out-of-Scope Use
|
148 |
+
|
149 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
150 |
+
-->
|
151 |
+
|
152 |
+
<!--
|
153 |
+
## Bias, Risks and Limitations
|
154 |
+
|
155 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
156 |
+
-->
|
157 |
+
|
158 |
+
<!--
|
159 |
+
### Recommendations
|
160 |
+
|
161 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
162 |
+
-->
|
163 |
+
|
164 |
+
## Training Details
|
165 |
+
|
166 |
+
### Training Hyperparameters
|
167 |
+
#### Non-Default Hyperparameters
|
168 |
+
|
169 |
+
- `eval_strategy`: steps
|
170 |
+
- `per_device_train_batch_size`: 16
|
171 |
+
- `per_device_eval_batch_size`: 16
|
172 |
+
- `num_train_epochs`: 15
|
173 |
+
- `warmup_ratio`: 0.1
|
174 |
+
- `fp16`: True
|
175 |
+
- `batch_sampler`: no_duplicates
|
176 |
+
|
177 |
+
#### All Hyperparameters
|
178 |
+
<details><summary>Click to expand</summary>
|
179 |
+
|
180 |
+
- `overwrite_output_dir`: False
|
181 |
+
- `do_predict`: False
|
182 |
+
- `eval_strategy`: steps
|
183 |
+
- `prediction_loss_only`: True
|
184 |
+
- `per_device_train_batch_size`: 16
|
185 |
+
- `per_device_eval_batch_size`: 16
|
186 |
+
- `per_gpu_train_batch_size`: None
|
187 |
+
- `per_gpu_eval_batch_size`: None
|
188 |
+
- `gradient_accumulation_steps`: 1
|
189 |
+
- `eval_accumulation_steps`: None
|
190 |
+
- `learning_rate`: 5e-05
|
191 |
+
- `weight_decay`: 0.0
|
192 |
+
- `adam_beta1`: 0.9
|
193 |
+
- `adam_beta2`: 0.999
|
194 |
+
- `adam_epsilon`: 1e-08
|
195 |
+
- `max_grad_norm`: 1.0
|
196 |
+
- `num_train_epochs`: 15
|
197 |
+
- `max_steps`: -1
|
198 |
+
- `lr_scheduler_type`: linear
|
199 |
+
- `lr_scheduler_kwargs`: {}
|
200 |
+
- `warmup_ratio`: 0.1
|
201 |
+
- `warmup_steps`: 0
|
202 |
+
- `log_level`: passive
|
203 |
+
- `log_level_replica`: warning
|
204 |
+
- `log_on_each_node`: True
|
205 |
+
- `logging_nan_inf_filter`: True
|
206 |
+
- `save_safetensors`: True
|
207 |
+
- `save_on_each_node`: False
|
208 |
+
- `save_only_model`: False
|
209 |
+
- `restore_callback_states_from_checkpoint`: False
|
210 |
+
- `no_cuda`: False
|
211 |
+
- `use_cpu`: False
|
212 |
+
- `use_mps_device`: False
|
213 |
+
- `seed`: 42
|
214 |
+
- `data_seed`: None
|
215 |
+
- `jit_mode_eval`: False
|
216 |
+
- `use_ipex`: False
|
217 |
+
- `bf16`: False
|
218 |
+
- `fp16`: True
|
219 |
+
- `fp16_opt_level`: O1
|
220 |
+
- `half_precision_backend`: auto
|
221 |
+
- `bf16_full_eval`: False
|
222 |
+
- `fp16_full_eval`: False
|
223 |
+
- `tf32`: None
|
224 |
+
- `local_rank`: 0
|
225 |
+
- `ddp_backend`: None
|
226 |
+
- `tpu_num_cores`: None
|
227 |
+
- `tpu_metrics_debug`: False
|
228 |
+
- `debug`: []
|
229 |
+
- `dataloader_drop_last`: False
|
230 |
+
- `dataloader_num_workers`: 0
|
231 |
+
- `dataloader_prefetch_factor`: None
|
232 |
+
- `past_index`: -1
|
233 |
+
- `disable_tqdm`: False
|
234 |
+
- `remove_unused_columns`: True
|
235 |
+
- `label_names`: None
|
236 |
+
- `load_best_model_at_end`: False
|
237 |
+
- `ignore_data_skip`: False
|
238 |
+
- `fsdp`: []
|
239 |
+
- `fsdp_min_num_params`: 0
|
240 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
241 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
242 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
243 |
+
- `deepspeed`: None
|
244 |
+
- `label_smoothing_factor`: 0.0
|
245 |
+
- `optim`: adamw_torch
|
246 |
+
- `optim_args`: None
|
247 |
+
- `adafactor`: False
|
248 |
+
- `group_by_length`: False
|
249 |
+
- `length_column_name`: length
|
250 |
+
- `ddp_find_unused_parameters`: None
|
251 |
+
- `ddp_bucket_cap_mb`: None
|
252 |
+
- `ddp_broadcast_buffers`: False
|
253 |
+
- `dataloader_pin_memory`: True
|
254 |
+
- `dataloader_persistent_workers`: False
|
255 |
+
- `skip_memory_metrics`: True
|
256 |
+
- `use_legacy_prediction_loop`: False
|
257 |
+
- `push_to_hub`: False
|
258 |
+
- `resume_from_checkpoint`: None
|
259 |
+
- `hub_model_id`: None
|
260 |
+
- `hub_strategy`: every_save
|
261 |
+
- `hub_private_repo`: False
|
262 |
+
- `hub_always_push`: False
|
263 |
+
- `gradient_checkpointing`: False
|
264 |
+
- `gradient_checkpointing_kwargs`: None
|
265 |
+
- `include_inputs_for_metrics`: False
|
266 |
+
- `eval_do_concat_batches`: True
|
267 |
+
- `fp16_backend`: auto
|
268 |
+
- `push_to_hub_model_id`: None
|
269 |
+
- `push_to_hub_organization`: None
|
270 |
+
- `mp_parameters`:
|
271 |
+
- `auto_find_batch_size`: False
|
272 |
+
- `full_determinism`: False
|
273 |
+
- `torchdynamo`: None
|
274 |
+
- `ray_scope`: last
|
275 |
+
- `ddp_timeout`: 1800
|
276 |
+
- `torch_compile`: False
|
277 |
+
- `torch_compile_backend`: None
|
278 |
+
- `torch_compile_mode`: None
|
279 |
+
- `dispatch_batches`: None
|
280 |
+
- `split_batches`: None
|
281 |
+
- `include_tokens_per_second`: False
|
282 |
+
- `include_num_input_tokens_seen`: False
|
283 |
+
- `neftune_noise_alpha`: None
|
284 |
+
- `optim_target_modules`: None
|
285 |
+
- `batch_eval_metrics`: False
|
286 |
+
- `eval_on_start`: False
|
287 |
+
- `batch_sampler`: no_duplicates
|
288 |
+
- `multi_dataset_batch_sampler`: proportional
|
289 |
+
|
290 |
+
</details>
|
291 |
+
|
292 |
+
### Training Logs
|
293 |
+
| Epoch | Step | Training Loss | loss |
|
294 |
+
|:-------:|:----:|:-------------:|:------:|
|
295 |
+
| 2.4390 | 100 | 0.0672 | 0.0435 |
|
296 |
+
| 4.8780 | 200 | 0.0132 | 0.0396 |
|
297 |
+
| 7.3171 | 300 | 0.0052 | 0.0404 |
|
298 |
+
| 9.7561 | 400 | 0.0027 | 0.0419 |
|
299 |
+
| 12.1951 | 500 | 0.002 | 0.0420 |
|
300 |
+
| 14.6341 | 600 | 0.0014 | 0.0423 |
|
301 |
+
|
302 |
+
|
303 |
+
### Framework Versions
|
304 |
+
- Python: 3.10.12
|
305 |
+
- Sentence Transformers: 3.0.1
|
306 |
+
- Transformers: 4.42.4
|
307 |
+
- PyTorch: 2.3.1+cu121
|
308 |
+
- Accelerate: 0.32.1
|
309 |
+
- Datasets: 2.21.0
|
310 |
+
- Tokenizers: 0.19.1
|
311 |
+
|
312 |
+
## Citation
|
313 |
+
|
314 |
+
### BibTeX
|
315 |
+
|
316 |
+
#### Sentence Transformers
|
317 |
+
```bibtex
|
318 |
+
@inproceedings{reimers-2019-sentence-bert,
|
319 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
320 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
321 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
322 |
+
month = "11",
|
323 |
+
year = "2019",
|
324 |
+
publisher = "Association for Computational Linguistics",
|
325 |
+
url = "https://arxiv.org/abs/1908.10084",
|
326 |
+
}
|
327 |
+
```
|
328 |
+
|
329 |
+
<!--
|
330 |
+
## Glossary
|
331 |
+
|
332 |
+
*Clearly define terms in order to be accessible across audiences.*
|
333 |
+
-->
|
334 |
+
|
335 |
+
<!--
|
336 |
+
## Model Card Authors
|
337 |
+
|
338 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
339 |
+
-->
|
340 |
+
|
341 |
+
<!--
|
342 |
+
## Model Card Contact
|
343 |
+
|
344 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
345 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-large-en",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 4096,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 16,
|
24 |
+
"num_hidden_layers": 24,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.42.4",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.42.4",
|
5 |
+
"pytorch": "2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e95a387d8b909189100334df7df1de5787c3aa2cd7460f272bece7425b739304
|
3 |
+
size 1340612432
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|