Ananthu357 commited on
Commit
2063bad
1 Parent(s): bd4b635

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:360
10
+ - loss:CosineSimilarityLoss
11
+ base_model: BAAI/bge-large-en
12
+ datasets: []
13
+ widget:
14
+ - source_sentence: Deadline for submitting project schedule.
15
+ sentences:
16
+ - Variation
17
+ - "The Railway shall have the right to let other contracts in connection with the\
18
+ \ works. The Contractor shall afford other Contractors reasonable opportunity\
19
+ \ for the storage of their materials and the execution of their works and shall\
20
+ \ properly connect and coordinate his work with theirs. If any part of the Contractor\x92\
21
+ s work depends upon proper execution or result upon the work of another Contractor(s),\
22
+ \ the Contractor shall inspect and promptly report to the Engineer any defects\
23
+ \ in such works that render it unsuitable for such proper execution and results.\
24
+ \ The Contractor's failure so-to inspect and report shall constitute an acceptance\
25
+ \ of the other Contractor's work as fit and proper for the reception of his work,\
26
+ \ except as to defects which may develop in the other Contractor's work after\
27
+ \ the execution of his work."
28
+ - The quantities set out in the accepted Schedule of Rates with items of works quantified
29
+ are the estimated quantities of the works
30
+ - source_sentence:  What is the deadline to submit the proposed project schedule?
31
+ sentences:
32
+ - "having value more than Rs 20 crore and original period of completion 12 months\
33
+ \ or more, when there is no reduction in original scope of work by more than 10%,\
34
+ \ and no extension granted on either railway or Contractor\x92s account,"
35
+ - Can the stones/rocks/bounders obtained during excavation be used for construction
36
+ if found technically satisfactory?
37
+ - Chart/PERT/CPM. He shall also submit the details of organisation (in terms of
38
+ labour and supervisors), plant and machinery that he intends to utilize (from
39
+ time to time) for execution of the work within stipulated date of completion.
40
+ - source_sentence: "Does the contract document contain a \x91third-party liability\
41
+ \ relationship\x92 provision?"
42
+ sentences:
43
+ - The Contractor shall indemnify and save harmless the Railway from and against
44
+ all actions, suit, proceedings, losses, costs, damages, charges, claims and demands
45
+ of every nature and description brought or recovered against the Railways by reason
46
+ of any act or omission of the Contractor, his agents or employees, in the execution
47
+ of the works or in his guarding of the same. All sums payable by way of compensation
48
+ under any of these conditions shall be considered as reasonable compensation to
49
+ be applied to the actual loss or damage sustained, and whether or not any damage
50
+ shall have been sustained.
51
+ - the Railway shall not in any way be liable for the supply of materials or for
52
+ the non-supply thereof for any reasons whatsoever nor for any loss or damage arising
53
+ in consequence of such delay or non-supply.
54
+ - The Railway shall have the right to let other contracts in connection with the
55
+ works.
56
+ - source_sentence: Liquidated Damages
57
+ sentences:
58
+ - The Contractor shall commence the works within 15 days after the receipt by him
59
+ of an order in writing to this effect from the Engineer and shall proceed with
60
+ the same with due expedition and without delay
61
+ - Any bribe, commission, gift or advantage given, promised or offered by or on behalf
62
+ of the Contractor or his partner or agent or servant or anyone on his behalf
63
+ - purpose of works either free of cost or pay thecost of the same.
64
+ - source_sentence: What is mentioned regarding the patent errors?
65
+ sentences:
66
+ - the Security Deposit already with railways under the contract shall be forfeited.
67
+ - This clause mentions Special Conditions, which might be additional documents relevant
68
+ to the contract.
69
+ - shall take upon himself and provide for the risk of any error which may subsequently
70
+ be discovered and shall make no subsequent claim on account thereof.
71
+ pipeline_tag: sentence-similarity
72
+ ---
73
+
74
+ # SentenceTransformer based on BAAI/bge-large-en
75
+
76
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
77
+
78
+ ## Model Details
79
+
80
+ ### Model Description
81
+ - **Model Type:** Sentence Transformer
82
+ - **Base model:** [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) <!-- at revision abe7d9d814b775ca171121fb03f394dc42974275 -->
83
+ - **Maximum Sequence Length:** 512 tokens
84
+ - **Output Dimensionality:** 1024 tokens
85
+ - **Similarity Function:** Cosine Similarity
86
+ <!-- - **Training Dataset:** Unknown -->
87
+ <!-- - **Language:** Unknown -->
88
+ <!-- - **License:** Unknown -->
89
+
90
+ ### Model Sources
91
+
92
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
93
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
94
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
95
+
96
+ ### Full Model Architecture
97
+
98
+ ```
99
+ SentenceTransformer(
100
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
101
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
102
+ (2): Normalize()
103
+ )
104
+ ```
105
+
106
+ ## Usage
107
+
108
+ ### Direct Usage (Sentence Transformers)
109
+
110
+ First install the Sentence Transformers library:
111
+
112
+ ```bash
113
+ pip install -U sentence-transformers
114
+ ```
115
+
116
+ Then you can load this model and run inference.
117
+ ```python
118
+ from sentence_transformers import SentenceTransformer
119
+
120
+ # Download from the 🤗 Hub
121
+ model = SentenceTransformer("Ananthu357/Ananthus-BAAI-for-contracts")
122
+ # Run inference
123
+ sentences = [
124
+ 'What is mentioned regarding the patent errors?',
125
+ 'shall take upon himself and provide for the risk of any error which may subsequently be discovered and shall make no subsequent claim on account thereof.',
126
+ 'This clause mentions Special Conditions, which might be additional documents relevant to the contract.',
127
+ ]
128
+ embeddings = model.encode(sentences)
129
+ print(embeddings.shape)
130
+ # [3, 1024]
131
+
132
+ # Get the similarity scores for the embeddings
133
+ similarities = model.similarity(embeddings, embeddings)
134
+ print(similarities.shape)
135
+ # [3, 3]
136
+ ```
137
+
138
+ <!--
139
+ ### Direct Usage (Transformers)
140
+
141
+ <details><summary>Click to see the direct usage in Transformers</summary>
142
+
143
+ </details>
144
+ -->
145
+
146
+ <!--
147
+ ### Downstream Usage (Sentence Transformers)
148
+
149
+ You can finetune this model on your own dataset.
150
+
151
+ <details><summary>Click to expand</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Out-of-Scope Use
158
+
159
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
160
+ -->
161
+
162
+ <!--
163
+ ## Bias, Risks and Limitations
164
+
165
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
166
+ -->
167
+
168
+ <!--
169
+ ### Recommendations
170
+
171
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
172
+ -->
173
+
174
+ ## Training Details
175
+
176
+ ### Training Hyperparameters
177
+ #### Non-Default Hyperparameters
178
+
179
+ - `eval_strategy`: steps
180
+ - `per_device_train_batch_size`: 16
181
+ - `per_device_eval_batch_size`: 16
182
+ - `num_train_epochs`: 40
183
+ - `warmup_ratio`: 0.1
184
+ - `fp16`: True
185
+ - `batch_sampler`: no_duplicates
186
+
187
+ #### All Hyperparameters
188
+ <details><summary>Click to expand</summary>
189
+
190
+ - `overwrite_output_dir`: False
191
+ - `do_predict`: False
192
+ - `eval_strategy`: steps
193
+ - `prediction_loss_only`: True
194
+ - `per_device_train_batch_size`: 16
195
+ - `per_device_eval_batch_size`: 16
196
+ - `per_gpu_train_batch_size`: None
197
+ - `per_gpu_eval_batch_size`: None
198
+ - `gradient_accumulation_steps`: 1
199
+ - `eval_accumulation_steps`: None
200
+ - `learning_rate`: 5e-05
201
+ - `weight_decay`: 0.0
202
+ - `adam_beta1`: 0.9
203
+ - `adam_beta2`: 0.999
204
+ - `adam_epsilon`: 1e-08
205
+ - `max_grad_norm`: 1.0
206
+ - `num_train_epochs`: 40
207
+ - `max_steps`: -1
208
+ - `lr_scheduler_type`: linear
209
+ - `lr_scheduler_kwargs`: {}
210
+ - `warmup_ratio`: 0.1
211
+ - `warmup_steps`: 0
212
+ - `log_level`: passive
213
+ - `log_level_replica`: warning
214
+ - `log_on_each_node`: True
215
+ - `logging_nan_inf_filter`: True
216
+ - `save_safetensors`: True
217
+ - `save_on_each_node`: False
218
+ - `save_only_model`: False
219
+ - `restore_callback_states_from_checkpoint`: False
220
+ - `no_cuda`: False
221
+ - `use_cpu`: False
222
+ - `use_mps_device`: False
223
+ - `seed`: 42
224
+ - `data_seed`: None
225
+ - `jit_mode_eval`: False
226
+ - `use_ipex`: False
227
+ - `bf16`: False
228
+ - `fp16`: True
229
+ - `fp16_opt_level`: O1
230
+ - `half_precision_backend`: auto
231
+ - `bf16_full_eval`: False
232
+ - `fp16_full_eval`: False
233
+ - `tf32`: None
234
+ - `local_rank`: 0
235
+ - `ddp_backend`: None
236
+ - `tpu_num_cores`: None
237
+ - `tpu_metrics_debug`: False
238
+ - `debug`: []
239
+ - `dataloader_drop_last`: False
240
+ - `dataloader_num_workers`: 0
241
+ - `dataloader_prefetch_factor`: None
242
+ - `past_index`: -1
243
+ - `disable_tqdm`: False
244
+ - `remove_unused_columns`: True
245
+ - `label_names`: None
246
+ - `load_best_model_at_end`: False
247
+ - `ignore_data_skip`: False
248
+ - `fsdp`: []
249
+ - `fsdp_min_num_params`: 0
250
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
251
+ - `fsdp_transformer_layer_cls_to_wrap`: None
252
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
253
+ - `deepspeed`: None
254
+ - `label_smoothing_factor`: 0.0
255
+ - `optim`: adamw_torch
256
+ - `optim_args`: None
257
+ - `adafactor`: False
258
+ - `group_by_length`: False
259
+ - `length_column_name`: length
260
+ - `ddp_find_unused_parameters`: None
261
+ - `ddp_bucket_cap_mb`: None
262
+ - `ddp_broadcast_buffers`: False
263
+ - `dataloader_pin_memory`: True
264
+ - `dataloader_persistent_workers`: False
265
+ - `skip_memory_metrics`: True
266
+ - `use_legacy_prediction_loop`: False
267
+ - `push_to_hub`: False
268
+ - `resume_from_checkpoint`: None
269
+ - `hub_model_id`: None
270
+ - `hub_strategy`: every_save
271
+ - `hub_private_repo`: False
272
+ - `hub_always_push`: False
273
+ - `gradient_checkpointing`: False
274
+ - `gradient_checkpointing_kwargs`: None
275
+ - `include_inputs_for_metrics`: False
276
+ - `eval_do_concat_batches`: True
277
+ - `fp16_backend`: auto
278
+ - `push_to_hub_model_id`: None
279
+ - `push_to_hub_organization`: None
280
+ - `mp_parameters`:
281
+ - `auto_find_batch_size`: False
282
+ - `full_determinism`: False
283
+ - `torchdynamo`: None
284
+ - `ray_scope`: last
285
+ - `ddp_timeout`: 1800
286
+ - `torch_compile`: False
287
+ - `torch_compile_backend`: None
288
+ - `torch_compile_mode`: None
289
+ - `dispatch_batches`: None
290
+ - `split_batches`: None
291
+ - `include_tokens_per_second`: False
292
+ - `include_num_input_tokens_seen`: False
293
+ - `neftune_noise_alpha`: None
294
+ - `optim_target_modules`: None
295
+ - `batch_eval_metrics`: False
296
+ - `batch_sampler`: no_duplicates
297
+ - `multi_dataset_batch_sampler`: proportional
298
+
299
+ </details>
300
+
301
+ ### Training Logs
302
+ | Epoch | Step | Training Loss | loss |
303
+ |:-------:|:----:|:-------------:|:------:|
304
+ | 3.5652 | 100 | 0.0564 | 0.0940 |
305
+ | 7.1304 | 200 | 0.0122 | 0.0713 |
306
+ | 10.4348 | 300 | 0.0051 | 0.0655 |
307
+ | 14.0 | 400 | 0.0026 | 0.0678 |
308
+ | 17.3043 | 500 | 0.001 | 0.0668 |
309
+ | 20.8696 | 600 | 0.0009 | 0.0666 |
310
+ | 24.1739 | 700 | 0.0008 | 0.0671 |
311
+ | 27.7391 | 800 | 0.0007 | 0.0674 |
312
+ | 31.0435 | 900 | 0.0007 | 0.0671 |
313
+
314
+
315
+ ### Framework Versions
316
+ - Python: 3.10.12
317
+ - Sentence Transformers: 3.0.1
318
+ - Transformers: 4.41.2
319
+ - PyTorch: 2.3.0+cu121
320
+ - Accelerate: 0.31.0
321
+ - Datasets: 2.20.0
322
+ - Tokenizers: 0.19.1
323
+
324
+ ## Citation
325
+
326
+ ### BibTeX
327
+
328
+ #### Sentence Transformers
329
+ ```bibtex
330
+ @inproceedings{reimers-2019-sentence-bert,
331
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
332
+ author = "Reimers, Nils and Gurevych, Iryna",
333
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
334
+ month = "11",
335
+ year = "2019",
336
+ publisher = "Association for Computational Linguistics",
337
+ url = "https://arxiv.org/abs/1908.10084",
338
+ }
339
+ ```
340
+
341
+ <!--
342
+ ## Glossary
343
+
344
+ *Clearly define terms in order to be accessible across audiences.*
345
+ -->
346
+
347
+ <!--
348
+ ## Model Card Authors
349
+
350
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
351
+ -->
352
+
353
+ <!--
354
+ ## Model Card Contact
355
+
356
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
357
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-large-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5922b0d2fb364d5e6fee0de854961993a191db140b398b63a1b9b87e2ed5579a
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff