--- license: mit language: - am - ar - bn - zh - cs - nl - en - fr - de - el - ha - he - hi - id - it - ja - jv - km - ko - lo - ms - mr - fa - pl - pt - ro - ru - es - sw - sv - tl - ta - te - th - tr - uk - ur - vi datasets: - simplescaling/s1K - lightblue/reasoning-multilingual-R1-Llama-70B-train base_model: - Qwen/Qwen2.5-1.5B-Instruct library_name: transformers --- It's a 1.5B model. It's a distill model like s1 and deepseek-r1-distill. It's test model. I hope I can reproduce a rl model like RL-Zero. This model is a mini-step. Thanks for evveryone in the open community. how to use: ``` from vllm import LLM, SamplingParams from transformers import AutoTokenizer model = LLM( "Amu/t1-1.5B" ) tok = AutoTokenizer.from_pretrained("simplescaling/s1-32B") stop_token_ids = tok("<|im_end|>")["input_ids"] sampling_params = SamplingParams( max_tokens=32768, min_tokens=0, stop_token_ids=stop_token_ids, ) prompt = "How many r in raspberry" prompt = "<|im_start|>system\nYou are t1, created by Amu. You are a helpful assistant.<|im_end|>\n<|im_start|>user\n" + prompt + "<|im_end|>\n<|im_start|>assistant\n" o = model.generate(prompt, sampling_params=sampling_params) print(o[0].outputs[0].text) ```