--- language: - en license: apache-2.0 tags: - alignment-handbook - generated_from_trainer base_model: microsoft/phi-2 pipeline_tag: text-generation model-index: - name: spin-phi2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 63.57 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 75.57 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 57.93 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 46.22 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 73.48 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 53.3 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2 name: Open LLM Leaderboard --- # outputs This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co./microsoft/phi-2) using [SPIN](https://github.com/uclaml/SPIN) on [ultrachat_200k dataset](https://huggingface.co./datasets/HuggingFaceH4/ultrachat_200k). # What's new I think SPIN not only can use on a SFT model, but also it can use on a pretrained model. Therefore, I use SPIN on a pretrained model microsoft/phi-2. And I get a higher score better than origin pretrained model. You can check the [open llm leaderboard](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard). But the ultrachat_200k dataset is a alignment dataset for sft model. I think there should use a alignment dataset for pretrained model. **I Think the best paradigm for training a conversational Large Language Model (LLM): pretrain -> dpo(spin) -> sft -> dpo(spin)** ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_amu__spin-phi2) | Metric |Value| |---------------------------------|----:| |Avg. |61.68| |AI2 Reasoning Challenge (25-Shot)|63.57| |HellaSwag (10-Shot) |75.57| |MMLU (5-Shot) |57.93| |TruthfulQA (0-shot) |46.22| |Winogrande (5-shot) |73.48| |GSM8k (5-shot) |53.30|