--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9398762157382847 - name: Recall type: recall value: 0.9513368385725472 - name: F1 type: f1 value: 0.9455718018568967 - name: Accuracy type: accuracy value: 0.9865442356267972 --- # bert-base-uncased-finetuned-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0727 - Precision: 0.9399 - Recall: 0.9513 - F1: 0.9456 - Accuracy: 0.9865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 439 | 0.0697 | 0.8960 | 0.9187 | 0.9072 | 0.9799 | | 0.185 | 2.0 | 878 | 0.0607 | 0.9227 | 0.9384 | 0.9304 | 0.9837 | | 0.0471 | 3.0 | 1317 | 0.0560 | 0.9341 | 0.9433 | 0.9387 | 0.9858 | | 0.0263 | 4.0 | 1756 | 0.0610 | 0.9300 | 0.9447 | 0.9373 | 0.9853 | | 0.0161 | 5.0 | 2195 | 0.0629 | 0.9361 | 0.9516 | 0.9437 | 0.9859 | | 0.0112 | 6.0 | 2634 | 0.0676 | 0.9372 | 0.9490 | 0.9431 | 0.9860 | | 0.0076 | 7.0 | 3073 | 0.0697 | 0.9348 | 0.9487 | 0.9417 | 0.9859 | | 0.0056 | 8.0 | 3512 | 0.0706 | 0.9364 | 0.9497 | 0.9430 | 0.9862 | | 0.0056 | 9.0 | 3951 | 0.0719 | 0.9381 | 0.9497 | 0.9439 | 0.9864 | | 0.0038 | 10.0 | 4390 | 0.0727 | 0.9399 | 0.9513 | 0.9456 | 0.9865 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1