AmrataYadav commited on
Commit
9dc6b54
·
verified ·
1 Parent(s): 2490cf6

End of training

Browse files
Files changed (1) hide show
  1. README.md +20 -13
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.9298884840454896
30
  - name: Recall
31
  type: recall
32
- value: 0.9421635529701309
33
  - name: F1
34
  type: f1
35
- value: 0.9359857746165815
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.985035029469236
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0574
49
- - Precision: 0.9299
50
- - Recall: 0.9422
51
- - F1: 0.9360
52
- - Accuracy: 0.9850
53
 
54
  ## Model description
55
 
@@ -74,15 +74,22 @@ The following hyperparameters were used during training:
74
  - seed: 42
75
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
  - lr_scheduler_type: linear
77
- - num_epochs: 3
78
 
79
  ### Training results
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | No log | 1.0 | 439 | 0.0743 | 0.8911 | 0.9132 | 0.9020 | 0.9793 |
84
- | 0.1936 | 2.0 | 878 | 0.0598 | 0.9231 | 0.9367 | 0.9298 | 0.9841 |
85
- | 0.0507 | 3.0 | 1317 | 0.0574 | 0.9299 | 0.9422 | 0.9360 | 0.9850 |
 
 
 
 
 
 
 
86
 
87
 
88
  ### Framework versions
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.9398762157382847
30
  - name: Recall
31
  type: recall
32
+ value: 0.9513368385725472
33
  - name: F1
34
  type: f1
35
+ value: 0.9455718018568967
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9865442356267972
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.0727
49
+ - Precision: 0.9399
50
+ - Recall: 0.9513
51
+ - F1: 0.9456
52
+ - Accuracy: 0.9865
53
 
54
  ## Model description
55
 
 
74
  - seed: 42
75
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
  - lr_scheduler_type: linear
77
+ - num_epochs: 10
78
 
79
  ### Training results
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | No log | 1.0 | 439 | 0.0697 | 0.8960 | 0.9187 | 0.9072 | 0.9799 |
84
+ | 0.185 | 2.0 | 878 | 0.0607 | 0.9227 | 0.9384 | 0.9304 | 0.9837 |
85
+ | 0.0471 | 3.0 | 1317 | 0.0560 | 0.9341 | 0.9433 | 0.9387 | 0.9858 |
86
+ | 0.0263 | 4.0 | 1756 | 0.0610 | 0.9300 | 0.9447 | 0.9373 | 0.9853 |
87
+ | 0.0161 | 5.0 | 2195 | 0.0629 | 0.9361 | 0.9516 | 0.9437 | 0.9859 |
88
+ | 0.0112 | 6.0 | 2634 | 0.0676 | 0.9372 | 0.9490 | 0.9431 | 0.9860 |
89
+ | 0.0076 | 7.0 | 3073 | 0.0697 | 0.9348 | 0.9487 | 0.9417 | 0.9859 |
90
+ | 0.0056 | 8.0 | 3512 | 0.0706 | 0.9364 | 0.9497 | 0.9430 | 0.9862 |
91
+ | 0.0056 | 9.0 | 3951 | 0.0719 | 0.9381 | 0.9497 | 0.9439 | 0.9864 |
92
+ | 0.0038 | 10.0 | 4390 | 0.0727 | 0.9399 | 0.9513 | 0.9456 | 0.9865 |
93
 
94
 
95
  ### Framework versions