AmrataYadav
commited on
End of training
Browse files
README.md
CHANGED
@@ -26,16 +26,16 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
45 |
|
46 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -74,15 +74,22 @@ The following hyperparameters were used during training:
|
|
74 |
- seed: 42
|
75 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
- lr_scheduler_type: linear
|
77 |
-
- num_epochs:
|
78 |
|
79 |
### Training results
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
-
| No log | 1.0 | 439 | 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
### Framework versions
|
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
+
value: 0.9398762157382847
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
+
value: 0.9513368385725472
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
+
value: 0.9455718018568967
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
+
value: 0.9865442356267972
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
45 |
|
46 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.0727
|
49 |
+
- Precision: 0.9399
|
50 |
+
- Recall: 0.9513
|
51 |
+
- F1: 0.9456
|
52 |
+
- Accuracy: 0.9865
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
74 |
- seed: 42
|
75 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
- lr_scheduler_type: linear
|
77 |
+
- num_epochs: 10
|
78 |
|
79 |
### Training results
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
+
| No log | 1.0 | 439 | 0.0697 | 0.8960 | 0.9187 | 0.9072 | 0.9799 |
|
84 |
+
| 0.185 | 2.0 | 878 | 0.0607 | 0.9227 | 0.9384 | 0.9304 | 0.9837 |
|
85 |
+
| 0.0471 | 3.0 | 1317 | 0.0560 | 0.9341 | 0.9433 | 0.9387 | 0.9858 |
|
86 |
+
| 0.0263 | 4.0 | 1756 | 0.0610 | 0.9300 | 0.9447 | 0.9373 | 0.9853 |
|
87 |
+
| 0.0161 | 5.0 | 2195 | 0.0629 | 0.9361 | 0.9516 | 0.9437 | 0.9859 |
|
88 |
+
| 0.0112 | 6.0 | 2634 | 0.0676 | 0.9372 | 0.9490 | 0.9431 | 0.9860 |
|
89 |
+
| 0.0076 | 7.0 | 3073 | 0.0697 | 0.9348 | 0.9487 | 0.9417 | 0.9859 |
|
90 |
+
| 0.0056 | 8.0 | 3512 | 0.0706 | 0.9364 | 0.9497 | 0.9430 | 0.9862 |
|
91 |
+
| 0.0056 | 9.0 | 3951 | 0.0719 | 0.9381 | 0.9497 | 0.9439 | 0.9864 |
|
92 |
+
| 0.0038 | 10.0 | 4390 | 0.0727 | 0.9399 | 0.9513 | 0.9456 | 0.9865 |
|
93 |
|
94 |
|
95 |
### Framework versions
|