Uploaded Jupyter Notebook
Browse files
falcon7b-fine-tuned-therapy.ipynb
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"private_outputs": true,
|
8 |
+
"gpuType": "T4"
|
9 |
+
},
|
10 |
+
"kernelspec": {
|
11 |
+
"name": "python3",
|
12 |
+
"display_name": "Python 3"
|
13 |
+
},
|
14 |
+
"language_info": {
|
15 |
+
"name": "python"
|
16 |
+
},
|
17 |
+
"accelerator": "GPU"
|
18 |
+
},
|
19 |
+
"cells": [
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": null,
|
23 |
+
"metadata": {
|
24 |
+
"id": "wVEwK8exTOmG"
|
25 |
+
},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"!pip install -qU bitsandbytes transformers datasets accelerate loralib einops xformers"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"source": [
|
34 |
+
"!pip install -q -U git+https://github.com/huggingface/peft.git"
|
35 |
+
],
|
36 |
+
"metadata": {
|
37 |
+
"id": "xF0gYxCezHpC"
|
38 |
+
},
|
39 |
+
"execution_count": null,
|
40 |
+
"outputs": []
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"source": [
|
45 |
+
"from huggingface_hub import notebook_login\n",
|
46 |
+
"\n",
|
47 |
+
"notebook_login()"
|
48 |
+
],
|
49 |
+
"metadata": {
|
50 |
+
"id": "S1Ny2qUfYe6c"
|
51 |
+
},
|
52 |
+
"execution_count": null,
|
53 |
+
"outputs": []
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"source": [
|
58 |
+
"!nvidia-smi"
|
59 |
+
],
|
60 |
+
"metadata": {
|
61 |
+
"id": "eunFqJaXYmoE"
|
62 |
+
},
|
63 |
+
"execution_count": null,
|
64 |
+
"outputs": []
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"source": [
|
69 |
+
"import os\n",
|
70 |
+
"import bitsandbytes as bnb\n",
|
71 |
+
"import pandas as pd\n",
|
72 |
+
"import torch\n",
|
73 |
+
"import torch.nn as nn\n",
|
74 |
+
"import transformers\n",
|
75 |
+
"from datasets import load_dataset\n",
|
76 |
+
"from peft import (\n",
|
77 |
+
" LoraConfig,\n",
|
78 |
+
" PeftConfig,\n",
|
79 |
+
" get_peft_model,\n",
|
80 |
+
" prepare_model_for_kbit_training,\n",
|
81 |
+
")\n",
|
82 |
+
"from transformers import (\n",
|
83 |
+
" AutoConfig,\n",
|
84 |
+
" AutoModelForCausalLM,\n",
|
85 |
+
" AutoTokenizer,\n",
|
86 |
+
" BitsAndBytesConfig,\n",
|
87 |
+
")\n",
|
88 |
+
"\n",
|
89 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
|
90 |
+
],
|
91 |
+
"metadata": {
|
92 |
+
"id": "tgjXtugbYpmE"
|
93 |
+
},
|
94 |
+
"execution_count": null,
|
95 |
+
"outputs": []
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"source": [
|
100 |
+
"model_id = \"tiiuae/falcon-7b-instruct\"\n",
|
101 |
+
"\n",
|
102 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
103 |
+
" load_in_4bit=True,\n",
|
104 |
+
" load_4bit_use_double_quant=True,\n",
|
105 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
106 |
+
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
|
107 |
+
")\n",
|
108 |
+
"\n",
|
109 |
+
"model =AutoModelForCausalLM.from_pretrained(\n",
|
110 |
+
" model_id,\n",
|
111 |
+
" device_map=\"auto\",\n",
|
112 |
+
" trust_remote_code=True,\n",
|
113 |
+
" quantization_config=bnb_config,\n",
|
114 |
+
")\n",
|
115 |
+
"\n",
|
116 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
117 |
+
"tokenizer.pad_token = tokenizer.eos_token"
|
118 |
+
],
|
119 |
+
"metadata": {
|
120 |
+
"id": "SZzmS9kQZcds"
|
121 |
+
},
|
122 |
+
"execution_count": null,
|
123 |
+
"outputs": []
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"source": [
|
128 |
+
"def print_trainable_parameters(model):\n",
|
129 |
+
" \"\"\"\n",
|
130 |
+
" Prints the number of trainable parameters in the model.\n",
|
131 |
+
" \"\"\"\n",
|
132 |
+
" trainable_params = 0\n",
|
133 |
+
" all_param = 0\n",
|
134 |
+
" for _, param in model.named_parameters():\n",
|
135 |
+
" all_param += param.numel()\n",
|
136 |
+
" if param.requires_grad:\n",
|
137 |
+
" trainable_params += param.numel()\n",
|
138 |
+
" print(\n",
|
139 |
+
" f\"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}\"\n",
|
140 |
+
" )"
|
141 |
+
],
|
142 |
+
"metadata": {
|
143 |
+
"id": "TOD9rLaWaTjG"
|
144 |
+
},
|
145 |
+
"execution_count": null,
|
146 |
+
"outputs": []
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"source": [
|
151 |
+
"model.gradient_checkpointing_enable()\n",
|
152 |
+
"model = prepare_model_for_kbit_training(model"
|
153 |
+
],
|
154 |
+
"metadata": {
|
155 |
+
"id": "IETKOBiRfLBM"
|
156 |
+
},
|
157 |
+
"execution_count": null,
|
158 |
+
"outputs": []
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"cell_type": "code",
|
162 |
+
"source": [
|
163 |
+
"config = LoraConfig(\n",
|
164 |
+
" r=16,\n",
|
165 |
+
" lora_alpha=32,\n",
|
166 |
+
" target_modules=[\"query_key_value\"],\n",
|
167 |
+
" lora_dropout=0.05,\n",
|
168 |
+
" bias=\"none\",\n",
|
169 |
+
" task_type=\"CAUSAL_LM\"\n",
|
170 |
+
")\n",
|
171 |
+
"\n",
|
172 |
+
"model = get_peft_model(model, config)\n",
|
173 |
+
"print_trainable_parameters(model)"
|
174 |
+
],
|
175 |
+
"metadata": {
|
176 |
+
"id": "3-fkzAk9fM4c"
|
177 |
+
},
|
178 |
+
"execution_count": null,
|
179 |
+
"outputs": []
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"cell_type": "code",
|
183 |
+
"source": [
|
184 |
+
"def generate_prompt(data_point):\n",
|
185 |
+
" return f\"\"\"\n",
|
186 |
+
"<human>: {data_point[\"Context\"]}\n",
|
187 |
+
"<assistance>: {data_point[\"Response\"]}\n",
|
188 |
+
" \"\"\".strip()\n",
|
189 |
+
"\n",
|
190 |
+
"def generate_and_tokenize_prompt(data_point):\n",
|
191 |
+
" full_prompt = generate_prompt(data_point)\n",
|
192 |
+
" tokenized_full_prompt = tokenizer(full_prompt, padding=True, truncation=True)\n",
|
193 |
+
" return tokenized_full_prompt\n"
|
194 |
+
],
|
195 |
+
"metadata": {
|
196 |
+
"id": "pisCY6iDfX2N"
|
197 |
+
},
|
198 |
+
"execution_count": null,
|
199 |
+
"outputs": []
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"cell_type": "code",
|
203 |
+
"source": [
|
204 |
+
"from datasets import load_dataset\n",
|
205 |
+
"dataset_name = 'alexandreteles/mental-health-conversational-data'\n",
|
206 |
+
"dataset = load_dataset(dataset_name, split=\"train\")"
|
207 |
+
],
|
208 |
+
"metadata": {
|
209 |
+
"id": "9V_J1XY5fiit"
|
210 |
+
},
|
211 |
+
"execution_count": null,
|
212 |
+
"outputs": []
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"cell_type": "code",
|
216 |
+
"source": [
|
217 |
+
"dataset[320]"
|
218 |
+
],
|
219 |
+
"metadata": {
|
220 |
+
"id": "K9TZWSXifl7G"
|
221 |
+
},
|
222 |
+
"execution_count": null,
|
223 |
+
"outputs": []
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"cell_type": "code",
|
227 |
+
"source": [
|
228 |
+
"dataset = dataset.shuffle().map(generate_and_tokenize_prompt)"
|
229 |
+
],
|
230 |
+
"metadata": {
|
231 |
+
"id": "G_4-L6RtukRM"
|
232 |
+
},
|
233 |
+
"execution_count": null,
|
234 |
+
"outputs": []
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "code",
|
238 |
+
"source": [
|
239 |
+
"print(dataset.shape)"
|
240 |
+
],
|
241 |
+
"metadata": {
|
242 |
+
"id": "X_zzdEFuuw7a"
|
243 |
+
},
|
244 |
+
"execution_count": null,
|
245 |
+
"outputs": []
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"cell_type": "code",
|
249 |
+
"source": [
|
250 |
+
"OUTPUT_DIR = \"experiments\""
|
251 |
+
],
|
252 |
+
"metadata": {
|
253 |
+
"id": "XP0hBNrFxzp8"
|
254 |
+
},
|
255 |
+
"execution_count": null,
|
256 |
+
"outputs": []
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"cell_type": "code",
|
260 |
+
"source": [
|
261 |
+
"%load_ext tensorboard\n",
|
262 |
+
"%tensorboard --logdir experiments/runs"
|
263 |
+
],
|
264 |
+
"metadata": {
|
265 |
+
"id": "N1gfJRpdx15C"
|
266 |
+
},
|
267 |
+
"execution_count": null,
|
268 |
+
"outputs": []
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"cell_type": "code",
|
272 |
+
"source": [
|
273 |
+
"training_args = transformers.TrainingArguments(\n",
|
274 |
+
" per_device_train_batch_size=2,\n",
|
275 |
+
" gradient_accumulation_steps=4,\n",
|
276 |
+
" num_train_epochs=5,\n",
|
277 |
+
" learning_rate=2e-4,\n",
|
278 |
+
" fp16=True,\n",
|
279 |
+
" save_total_limit=4,\n",
|
280 |
+
" logging_steps=10,\n",
|
281 |
+
" output_dir=OUTPUT_DIR,\n",
|
282 |
+
" max_steps=800,\n",
|
283 |
+
" optim=\"paged_adamw_8bit\",\n",
|
284 |
+
" lr_scheduler_type = 'cosine',\n",
|
285 |
+
" warmup_ratio = 0.05,\n",
|
286 |
+
" report_to = 'tensorboard'\n",
|
287 |
+
")\n",
|
288 |
+
"\n",
|
289 |
+
"trainer = transformers.Trainer(\n",
|
290 |
+
" model=model,\n",
|
291 |
+
" train_dataset=dataset,\n",
|
292 |
+
" args=training_args,\n",
|
293 |
+
" data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),\n",
|
294 |
+
")\n",
|
295 |
+
"model.config.use_cache = False # silence the warnings. Please re-enable for inference!\n",
|
296 |
+
"trainer.train()"
|
297 |
+
],
|
298 |
+
"metadata": {
|
299 |
+
"id": "796I79rpx5tt"
|
300 |
+
},
|
301 |
+
"execution_count": null,
|
302 |
+
"outputs": []
|
303 |
+
}
|
304 |
+
]
|
305 |
+
}
|