--- language: - ar widget: - text: "لقد كان الاحتفال رائع" - text: "هناك بعض القوانين التي يجب تغيرها" - text: "الخدمة كانت سيئة" tags: - text classification - Sentiment --- ## Arabic-MARBERT-Sentiment Model #### Model description **Arabic-MARBERT-Sentiment Model** is a Sentiment analysis model that was built by fine-tuning the [MARBERT](https://huggingface.co./UBC-NLP/MARBERT) model. For the fine-tuning, I used [KAUST dataset](https://www.kaggle.com/competitions/arabic-sentiment-analysis-2021-kaust), which includes 3 labels(positive,negative,and neutral). #### How to use To use the model with a transformers pipeline: ```python >>>from transformers import pipeline >>>model = pipeline('text-classification', model='Ammar-alhaj-ali/arabic-MARBERT-sentiment') >>>sentences = ['لقد استمتعت بالحفلة', 'خدمة المطعم كانت محبطة'] >>>model(sentences) [{'label': 'positive', 'score': 0.9577557444572449}, {'label': 'negative', 'score': 0.9158180952072144}]