--- library_name: peft license: mit language: - en tags: - transformers - biology - esm - esm2 - protein - protein language model --- # ESM-2 RNA Binding Site LoRA This is a Parameter Efficient Fine Tuning (PEFT) Low Rank Adaptation (LoRA) of the [esm2_t6_8M_UR50D](https://huggingface.co./facebook/esm2_t6_8M_UR50D) model for the (binary) token classification task of predicting RNA binding sites of proteins. You can also find a version of this model that was fine-tuned without LoRA [here](https://huggingface.co./AmelieSchreiber/esm2_t6_8M_UR50D_rna_binding_site_predictor). ## Training procedure This is a Low Rank Adaptation (LoRA) of `esm2_t6_8M_UR50D`, trained on `166` protein sequences in the [RNA binding sites dataset](https://huggingface.co./datasets/AmelieSchreiber/data_of_protein-rna_binding_sites) using a `80/20` train/test split. This model was trained with class weighting due to the imbalanced nature of the RNA binding site dataset (fewer binding sites than non-binding sites). You can train your own version using [this notebook](https://huggingface.co./AmelieSchreiber/esm2_t6_8M_weighted_lora_rna_binding/blob/main/LoRA_binding_sites_no_sweeps_v2.ipynb)! You just need the RNA `binding_sites.xml` file [found here](https://huggingface.co./datasets/AmelieSchreiber/data_of_protein-rna_binding_sites). You may also need to run some `pip install` statements at the beginning of the script. If you are running in colab run: ```python !pip install transformers[torch] datasets peft -q ``` ```python !pip install accelerate -U -q ``` Try to improve upon these metrics by adjusting the hyperparameters: ``` {'eval_loss': 0.49476009607315063, 'eval_precision': 0.14372964169381108, 'eval_recall': 0.7526652452025586, 'eval_f1': 0.24136752136752138, 'eval_auc': 0.7710141129858947, 'epoch': 15.0} ``` A similar model can also be trained using the Github with a training script and conda env YAML, which can be [found here](https://github.com/Amelie-Schreiber/esm2_LoRA_binding_sites/tree/main). This version uses wandb sweeps for hyperparameter search. However, it does not use class weighting. ### Framework versions - PEFT 0.4.0 ## Using the Model To use the model, try running the following pip install statements: ```python !pip install transformers peft -q ``` then try tunning: ```python from transformers import AutoModelForTokenClassification, AutoTokenizer from peft import PeftModel import torch # Path to the saved LoRA model model_path = "AmelieSchreiber/esm2_t6_8M_weighted_lora_rna_binding" # ESM2 base model base_model_path = "facebook/esm2_t6_8M_UR50D" # Load the model base_model = AutoModelForTokenClassification.from_pretrained(base_model_path) loaded_model = PeftModel.from_pretrained(base_model, model_path) # Ensure the model is in evaluation mode loaded_model.eval() # Load the tokenizer loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path) # Protein sequence for inference protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence # Tokenize the sequence inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length') # Run the model with torch.no_grad(): logits = loaded_model(**inputs).logits # Get predictions tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens predictions = torch.argmax(logits, dim=2) # Define labels id2label = { 0: "No binding site", 1: "Binding site" } # Print the predicted labels for each token for token, prediction in zip(tokens, predictions[0].numpy()): if token not in ['', '', '']: print((token, id2label[prediction])) ```