File size: 3,789 Bytes
79ba33b 81cfd05 79ba33b 81cfd05 7bb7235 81cfd05 79ba33b 81cfd05 7bb7235 634f89e a85d4ab d5f5792 81cfd05 d5f5792 81cfd05 79ba33b 81cfd05 a954a3e 81cfd05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
library_name: peft
license: mit
language:
- en
tags:
- transformers
- biology
- esm
- esm2
- protein
- protein language model
---
# ESM-2 RNA Binding Site LoRA
This is a Parameter Efficient Fine Tuning (PEFT) Low Rank Adaptation (LoRA) of
the [esm2_t6_8M_UR50D](https://huggingface.co./facebook/esm2_t6_8M_UR50D) model for the (binary) token classification task of
predicting RNA binding sites of proteins. You can also find a version of this model
that was fine-tuned without LoRA [here](https://huggingface.co./AmelieSchreiber/esm2_t6_8M_UR50D_rna_binding_site_predictor).
## Training procedure
This is a Low Rank Adaptation (LoRA) of `esm2_t6_8M_UR50D`,
trained on `166` protein sequences in the [RNA binding sites dataset](https://huggingface.co./datasets/AmelieSchreiber/data_of_protein-rna_binding_sites)
using a `80/20` train/test split. This model was trained with class weighting due to the imbalanced nature
of the RNA binding site dataset (fewer binding sites than non-binding sites). You can train your own version
using [this notebook](https://huggingface.co./AmelieSchreiber/esm2_t6_8M_weighted_lora_rna_binding/blob/main/LoRA_binding_sites_no_sweeps_v2.ipynb)!
You just need the RNA `binding_sites.xml` file [found here](https://huggingface.co./datasets/AmelieSchreiber/data_of_protein-rna_binding_sites).
You may also need to run some `pip install` statements at the beginning of the script. If you are running in colab run:
```python
!pip install transformers[torch] datasets peft -q
```
```python
!pip install accelerate -U -q
```
Try to improve upon these metrics by adjusting the hyperparameters:
```
{'eval_loss': 0.49476009607315063,
'eval_precision': 0.14372964169381108,
'eval_recall': 0.7526652452025586,
'eval_f1': 0.24136752136752138,
'eval_auc': 0.7710141129858947,
'epoch': 15.0}
```
A similar model can also be trained using the Github with a training script and conda env YAML, which can be
[found here](https://github.com/Amelie-Schreiber/esm2_LoRA_binding_sites/tree/main). This version uses wandb sweeps for hyperparameter search.
However, it does not use class weighting.
### Framework versions
- PEFT 0.4.0
## Using the Model
To use the model, try running the following pip install statements:
```python
!pip install transformers peft -q
```
then try tunning:
```python
from transformers import AutoModelForTokenClassification, AutoTokenizer
from peft import PeftModel
import torch
# Path to the saved LoRA model
model_path = "AmelieSchreiber/esm2_t6_8M_weighted_lora_rna_binding"
# ESM2 base model
base_model_path = "facebook/esm2_t6_8M_UR50D"
# Load the model
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path)
loaded_model = PeftModel.from_pretrained(base_model, model_path)
# Ensure the model is in evaluation mode
loaded_model.eval()
# Load the tokenizer
loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path)
# Protein sequence for inference
protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence
# Tokenize the sequence
inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length')
# Run the model
with torch.no_grad():
logits = loaded_model(**inputs).logits
# Get predictions
tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens
predictions = torch.argmax(logits, dim=2)
# Define labels
id2label = {
0: "No binding site",
1: "Binding site"
}
# Print the predicted labels for each token
for token, prediction in zip(tokens, predictions[0].numpy()):
if token not in ['<pad>', '<cls>', '<eos>']:
print((token, id2label[prediction]))
```
|