AmelieSchreiber
commited on
Commit
·
6187032
1
Parent(s):
a728b2c
Update README.md
Browse files
README.md
CHANGED
@@ -1,14 +1,83 @@
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
## Training procedure
|
|
|
|
|
|
|
|
|
|
|
7 |
```
|
8 |
Epoch Training Loss Validation Loss Accuracy Precision Recall F1 Auc Mcc
|
9 |
1 0.037400 0.301413 0.939431 0.366282 0.833003 0.508826 0.888300 0.528311
|
10 |
```
|
11 |
-
### Framework versions
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
- PEFT 0.5.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
license: mit
|
4 |
+
datasets:
|
5 |
+
- AmelieSchreiber/binding_sites_random_split_by_family_550K
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
- roc_auc
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- matthews_correlation
|
13 |
---
|
14 |
|
15 |
## Training procedure
|
16 |
+
|
17 |
+
This model was finetuned on ~549K protein sequences from the UniProt database. The dataset can be found
|
18 |
+
[here](https://huggingface.co/datasets/AmelieSchreiber/binding_sites_random_split_by_family_550K). The model obtains
|
19 |
+
the following test metrics:
|
20 |
+
|
21 |
```
|
22 |
Epoch Training Loss Validation Loss Accuracy Precision Recall F1 Auc Mcc
|
23 |
1 0.037400 0.301413 0.939431 0.366282 0.833003 0.508826 0.888300 0.528311
|
24 |
```
|
|
|
25 |
|
26 |
+
The dataset size increase from ~209K protein sequences to ~549K clearly improved performance in terms of test metric.
|
27 |
+
We used Hugging Face's parameter efficient finetuning (PEFT) library to finetune with Low Rank Adaptation (LoRA). We decided
|
28 |
+
to use a rank of 2 for the LoRA, as this was shown to slightly improve the test metrics compared to rank 8 and rank 16 on the
|
29 |
+
same model trained on the smaller dataset.
|
30 |
+
|
31 |
+
### Framework versions
|
32 |
|
33 |
- PEFT 0.5.0
|
34 |
+
|
35 |
+
## Using the model
|
36 |
+
|
37 |
+
To use the model on one of your protein sequences try running the following:
|
38 |
+
|
39 |
+
```python
|
40 |
+
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
41 |
+
from peft import PeftModel
|
42 |
+
import torch
|
43 |
+
|
44 |
+
# Path to the saved LoRA model
|
45 |
+
model_path = "AmelieSchreiber/esm2_t12_35M_lora_binding_sites_v2_cp1"
|
46 |
+
# ESM2 base model
|
47 |
+
base_model_path = "facebook/esm2_t12_35M_UR50D"
|
48 |
+
|
49 |
+
# Load the model
|
50 |
+
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path)
|
51 |
+
loaded_model = PeftModel.from_pretrained(base_model, model_path)
|
52 |
+
|
53 |
+
# Ensure the model is in evaluation mode
|
54 |
+
loaded_model.eval()
|
55 |
+
|
56 |
+
# Load the tokenizer
|
57 |
+
loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
58 |
+
|
59 |
+
# Protein sequence for inference
|
60 |
+
protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence
|
61 |
+
|
62 |
+
# Tokenize the sequence
|
63 |
+
inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length')
|
64 |
+
|
65 |
+
# Run the model
|
66 |
+
with torch.no_grad():
|
67 |
+
logits = loaded_model(**inputs).logits
|
68 |
+
|
69 |
+
# Get predictions
|
70 |
+
tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens
|
71 |
+
predictions = torch.argmax(logits, dim=2)
|
72 |
+
|
73 |
+
# Define labels
|
74 |
+
id2label = {
|
75 |
+
0: "No binding site",
|
76 |
+
1: "Binding site"
|
77 |
+
}
|
78 |
+
|
79 |
+
# Print the predicted labels for each token
|
80 |
+
for token, prediction in zip(tokens, predictions[0].numpy()):
|
81 |
+
if token not in ['<pad>', '<cls>', '<eos>']:
|
82 |
+
print((token, id2label[prediction]))
|
83 |
+
```
|