--- license: apache-2.0 tags: - fine-tuned - qwen2.5c - instruct - causal-lm --- # Qwen2.5-7b-instruct-sft This is a fine-tuned version of the **Qwen2.5-7B-Instruct** model for **instruction-following tasks**. It was fine-tuned using the `SFTTrainer` from the `trl` library on the **OpenAssistant Guanaco** dataset. ## Model Details ### **Base Model** - **Model**: [Qwen2.5-7B-Instruct](https://huggingface.co./Qwen/Qwen2.5-7B-Instruct) - **Architecture**: Transformer-based causal language model - **License**: Apache 2.0 ### **Fine-Tuning Details** - **Dataset**: OpenAssistant Guanaco - **Training Epochs**: 1 - **Batch Size**: 2 - **Gradient Accumulation Steps**: 16 - **Learning Rate**: 1e-5 - **Optimizer**: Paged AdamW 8-bit - **Mixed Precision**: `fp16` (if `bf16` is not supported) or `bf16` - **Max Sequence Length**: 512 tokens ### **Training Hardware** - **GPU**: NVIDIA A100 (or your specific GPU) - **Training Time**: X hours (optional) ## Usage You can use this model with the Hugging Face `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model = AutoModelForCausalLM.from_pretrained("Ameer-linnk/qwen2.5-7b-instruct-sft") tokenizer = AutoTokenizer.from_pretrained("Ameer-linnk/qwen2.5-7b-instruct-sft") # Prepare input input_text = "What is the capital of France?" inputs = tokenizer(input_text, return_tensors="pt") # Generate output outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) Example Output Input: What is the capital of France? Output: The capital of France is Paris.