Amarsanaa1525 commited on
Commit
9839e84
·
1 Parent(s): bbc9349

End of training

Browse files
Files changed (1) hide show
  1. README.md +17 -8
README.md CHANGED
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.1346
25
- - Precision: 0.9335
26
- - Recall: 0.9430
27
- - F1: 0.9382
28
- - Accuracy: 0.9813
29
 
30
  ## Model description
31
 
@@ -46,17 +46,26 @@ More information needed
46
  The following hyperparameters were used during training:
47
  - learning_rate: 2e-05
48
  - train_batch_size: 16
49
- - eval_batch_size: 32
50
  - seed: 42
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: linear
53
- - num_epochs: 1
54
 
55
  ### Training results
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 0.0021 | 1.0 | 477 | 0.1346 | 0.9335 | 0.9430 | 0.9382 | 0.9813 |
 
 
 
 
 
 
 
 
 
60
 
61
 
62
  ### Framework versions
 
21
 
22
  This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.1614
25
+ - Precision: 0.9347
26
+ - Recall: 0.9439
27
+ - F1: 0.9393
28
+ - Accuracy: 0.9809
29
 
30
  ## Model description
31
 
 
46
  The following hyperparameters were used during training:
47
  - learning_rate: 2e-05
48
  - train_batch_size: 16
49
+ - eval_batch_size: 16
50
  - seed: 42
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: linear
53
+ - num_epochs: 10
54
 
55
  ### Training results
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.003 | 1.0 | 477 | 0.1548 | 0.9130 | 0.9269 | 0.9199 | 0.9762 |
60
+ | 0.0048 | 2.0 | 954 | 0.1259 | 0.9345 | 0.9434 | 0.9389 | 0.9806 |
61
+ | 0.0024 | 3.0 | 1431 | 0.1324 | 0.9291 | 0.9432 | 0.9361 | 0.9806 |
62
+ | 0.0023 | 4.0 | 1908 | 0.1416 | 0.9315 | 0.9431 | 0.9372 | 0.9802 |
63
+ | 0.0012 | 5.0 | 2385 | 0.1466 | 0.9329 | 0.9427 | 0.9378 | 0.9808 |
64
+ | 0.001 | 6.0 | 2862 | 0.1507 | 0.9335 | 0.9428 | 0.9381 | 0.9804 |
65
+ | 0.0007 | 7.0 | 3339 | 0.1558 | 0.9350 | 0.9438 | 0.9394 | 0.9805 |
66
+ | 0.0007 | 8.0 | 3816 | 0.1588 | 0.9355 | 0.9453 | 0.9404 | 0.9804 |
67
+ | 0.0003 | 9.0 | 4293 | 0.1605 | 0.9338 | 0.9429 | 0.9383 | 0.9807 |
68
+ | 0.0003 | 10.0 | 4770 | 0.1614 | 0.9347 | 0.9439 | 0.9393 | 0.9809 |
69
 
70
 
71
  ### Framework versions