--- license: mit base_model: DTAI-KULeuven/robbert-2023-dutch-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: robbert2 results: [] --- # robbert2 This model is a fine-tuned version of [DTAI-KULeuven/robbert-2023-dutch-base](https://huggingface.co./DTAI-KULeuven/robbert-2023-dutch-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1668 - Accuracy: 0.9617 - F1: 0.6771 - Precision: 0.7418 - Recall: 0.6357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1552 | 1.0 | 9646 | 0.1982 | 0.9569 | 0.4843 | 0.5375 | 0.4579 | | 0.1169 | 2.0 | 19292 | 0.1856 | 0.9653 | 0.6065 | 0.7167 | 0.5540 | | 0.0831 | 3.0 | 28938 | 0.1668 | 0.9617 | 0.6771 | 0.7418 | 0.6357 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.19.1