End of training
Browse files
lr_scheduler/lr_scheduler.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1076
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7ff260f2e05fbce740edbdb45e6fec95b731941ad4077b051c8da5bb1f684a1
|
3 |
size 1076
|
optimizer/optimizer.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1149290878
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60d2ec204528438aa57b245329bdb08da454a36321dac7fa203011a06d282a60
|
3 |
size 1149290878
|
scheduler/scheduler_config.py
CHANGED
@@ -23,21 +23,23 @@ class SDEPolynomialConfig:
|
|
23 |
drift_degree = 20
|
24 |
diffusion_degree = 20
|
25 |
|
26 |
-
drift_parameters = Matrix([sympy.symbols(f"f:{drift_degree}", real=True, nonzero=True)])
|
|
|
27 |
|
28 |
-
diffusion_parameters = Matrix([sympy.symbols("
|
29 |
|
30 |
|
31 |
@property
|
32 |
def drift(self):
|
33 |
transformed_variable = self.variable
|
34 |
-
return -
|
|
|
35 |
|
36 |
|
37 |
@property
|
38 |
def diffusion(self):
|
39 |
-
|
40 |
-
return self.variable**(self.
|
41 |
|
42 |
# TODO (KLAUS) : in the SDE SAMPLING CHANGING Q impacts how we sample z ~ N(0, Q*(delta t))
|
43 |
diffusion_matrix = 1
|
@@ -52,4 +54,4 @@ class SDEPolynomialConfig:
|
|
52 |
|
53 |
|
54 |
target = "epsilon" # x0
|
55 |
-
non_symbolic_parameters = {'drift': torch.
|
|
|
23 |
drift_degree = 20
|
24 |
diffusion_degree = 20
|
25 |
|
26 |
+
#drift_parameters = Matrix([sympy.symbols(f"f:{drift_degree}", real=True, nonzero=True)])
|
27 |
+
drift_parameters = Matrix([sympy.symbols(f"f0", real=True)])
|
28 |
|
29 |
+
diffusion_parameters = Matrix([sympy.symbols(f"l:{diffusion_degree}", real=True, nonzero=True)])
|
30 |
|
31 |
|
32 |
@property
|
33 |
def drift(self):
|
34 |
transformed_variable = self.variable
|
35 |
+
return - (transformed_variable**2 + 4 * transformed_variable**4 + 2* transformed_variable**5)
|
36 |
+
#return -sympy.Abs(sum(sympy.HadamardProduct(Matrix([[transformed_variable**i for i in range(1,self.drift_degree+1)]]), self.drift_parameters).doit()))
|
37 |
|
38 |
|
39 |
@property
|
40 |
def diffusion(self):
|
41 |
+
#return self.variable * 1e-10
|
42 |
+
return self.variable**(sum(sympy.HadamardProduct(Matrix([[self.variable**i for i in range(0,self.diffusion_degree)]]),self.diffusion_parameters.applyfunc(lambda x: x**2)).doit()))
|
43 |
|
44 |
# TODO (KLAUS) : in the SDE SAMPLING CHANGING Q impacts how we sample z ~ N(0, Q*(delta t))
|
45 |
diffusion_matrix = 1
|
|
|
54 |
|
55 |
|
56 |
target = "epsilon" # x0
|
57 |
+
non_symbolic_parameters = {'drift': torch.tensor([0.]), 'diffusion': torch.ones(diffusion_degree)}
|
scheduler/sdeparameters.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 220
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6995386ca1a48ac6d10982761fc3bf36ccb62a39c091a042e2883a6daeca94c3
|
3 |
size 220
|
unet/diffusion_pytorch_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 574476604
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45111d898ef213981165be7820ec0b934501a727b723f745f824548e03c0a3b8
|
3 |
size 574476604
|