AltLuv commited on
Commit
7b20912
·
1 Parent(s): 028d5fe

End of training

Browse files
lr_scheduler/lr_scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cc9a5d647349c541df37221f857f1528d69a64ee8921808d7169158f833bb344
3
  size 1076
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7ff260f2e05fbce740edbdb45e6fec95b731941ad4077b051c8da5bb1f684a1
3
  size 1076
optimizer/optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:50f22f9265e94e528478207e4fc002476ad0034abeea03c61fa14773b8587fff
3
  size 1149290878
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60d2ec204528438aa57b245329bdb08da454a36321dac7fa203011a06d282a60
3
  size 1149290878
scheduler/scheduler_config.py CHANGED
@@ -23,21 +23,23 @@ class SDEPolynomialConfig:
23
  drift_degree = 20
24
  diffusion_degree = 20
25
 
26
- drift_parameters = Matrix([sympy.symbols(f"f:{drift_degree}", real=True, nonzero=True)])
 
27
 
28
- diffusion_parameters = Matrix([sympy.symbols("l0", real=True, nonzero=True)])
29
 
30
 
31
  @property
32
  def drift(self):
33
  transformed_variable = self.variable
34
- return -sympy.Abs(sum(sympy.HadamardProduct(Matrix([[transformed_variable**i for i in range(1,self.drift_degree+1)]]), self.drift_parameters).doit()))
 
35
 
36
 
37
  @property
38
  def diffusion(self):
39
-
40
- return self.variable**(self.diffusion_parameters[0]**2)
41
 
42
  # TODO (KLAUS) : in the SDE SAMPLING CHANGING Q impacts how we sample z ~ N(0, Q*(delta t))
43
  diffusion_matrix = 1
@@ -52,4 +54,4 @@ class SDEPolynomialConfig:
52
 
53
 
54
  target = "epsilon" # x0
55
- non_symbolic_parameters = {'drift': torch.ones(drift_degree), 'diffusion': torch.tensor([1.])}
 
23
  drift_degree = 20
24
  diffusion_degree = 20
25
 
26
+ #drift_parameters = Matrix([sympy.symbols(f"f:{drift_degree}", real=True, nonzero=True)])
27
+ drift_parameters = Matrix([sympy.symbols(f"f0", real=True)])
28
 
29
+ diffusion_parameters = Matrix([sympy.symbols(f"l:{diffusion_degree}", real=True, nonzero=True)])
30
 
31
 
32
  @property
33
  def drift(self):
34
  transformed_variable = self.variable
35
+ return - (transformed_variable**2 + 4 * transformed_variable**4 + 2* transformed_variable**5)
36
+ #return -sympy.Abs(sum(sympy.HadamardProduct(Matrix([[transformed_variable**i for i in range(1,self.drift_degree+1)]]), self.drift_parameters).doit()))
37
 
38
 
39
  @property
40
  def diffusion(self):
41
+ #return self.variable * 1e-10
42
+ return self.variable**(sum(sympy.HadamardProduct(Matrix([[self.variable**i for i in range(0,self.diffusion_degree)]]),self.diffusion_parameters.applyfunc(lambda x: x**2)).doit()))
43
 
44
  # TODO (KLAUS) : in the SDE SAMPLING CHANGING Q impacts how we sample z ~ N(0, Q*(delta t))
45
  diffusion_matrix = 1
 
54
 
55
 
56
  target = "epsilon" # x0
57
+ non_symbolic_parameters = {'drift': torch.tensor([0.]), 'diffusion': torch.ones(diffusion_degree)}
scheduler/sdeparameters.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eeb1459bbcbc570e1500ace6bd35966cdd2d7991ab5ad91635bdf3d0080d7acf
3
  size 220
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6995386ca1a48ac6d10982761fc3bf36ccb62a39c091a042e2883a6daeca94c3
3
  size 220
unet/diffusion_pytorch_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:639d03b452944d97c7f29345d8d18affc241952a3f70890cc923570fa28e5448
3
  size 574476604
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45111d898ef213981165be7820ec0b934501a727b723f745f824548e03c0a3b8
3
  size 574476604