--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail model-index: - name: bart-base-finetuned-summarization-cnn-ver3 results: - task: type: summarization name: Summarization dataset: name: ccdv/pubmed-summarization type: ccdv/pubmed-summarization config: section split: train metrics: - type: rouge value: 7.4825 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmMyZDE4ZDFiNjA2ZTBkMTQzMDFiZWFlYjQ4NWI3MWM2MTVmNWM2MmQ2YmYxNGUyMzI1MjcxZWI1OTExYzI4YiIsInZlcnNpb24iOjF9.vehISM8OOOdyb0ZkN8udebOes-YRnUqyV6D6ctQUtCaEXxGjFQQgNLyJJmI7eU28Oum55TRpH82zA4lU9YX6Dg - type: rouge value: 2.19 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWYxY2ZiNTdjZTRlYTYwM2Q0MmFmMWZkZDJlZTgxODgxMWQ5ZGRiOThkMzNkZjJlNGYyZjMwOTBkNGRlNWYxOCIsInZlcnNpb24iOjF9.VrB5STHbL8ArFnlfloSMzY9oJLRKYmZgoMxrrujRt17hb1H_KKC0l7VG7k1Alja2N2nj8-8WcsVP49fJGS7JAQ - type: rouge value: 6.2296 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODQ4OTE5MTk0NzI0OTk3MzFhYTNjMmU5ZjA3N2YyOWQ5ODM4MmE5NzE1MzM3NTI3NGM4ODE4Mjk4OGE3YzI1NSIsInZlcnNpb24iOjF9.FJp0BMVhWPMMmME68tHTMNIisB-COWMrfrZAPj9V82lG1fFwxu69bbfqGGONCdpJOZHYazxi5X6aoL2mB3uyAw - type: rouge value: 6.915 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjk2YTY5NTQ5M2YzMmViMDQ3MTllZjM1MjkyZTUwOGJmM2Q3ZDU2ZDU5NDZlMTJmMThjZjM0ODJlZmYzNmU1MiIsInZlcnNpb24iOjF9.CNm77jjHRr9eDgGUhUe9S-KoivV8KcVHIo_4rclEsX8JxbhwXhd06gF7gvlkUyedAqyodS0QEJzQtAiQ7txMAA - type: loss value: 6.158000469207764 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWFlYWQ1Njk1YTdlNGY3YTgxYzY1Mzc1NzcwYjQyZjkxNTc5ZWViN2FjYjk1MDliMDgzODE1MDgyMzkzMWM3ZSIsInZlcnNpb24iOjF9.eVB-DwOcGg7-y7QG1mNOiU45b1SS39kesQPzU_rzpYknnlFK7Z_AMU9mNj87V2Z2q63VnyIH0uRCM-ijghziAw - type: gen_len value: 20.0 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWZjMjhjOGUzMWI5N2Q3MWNlNjU2NjM1MDliYWE0YTFlMjM0YTcxYzBhNmVjNjM2YzJlZTdkYWEwMjFlYjY4OSIsInZlcnNpb24iOjF9.7ZPCbgPyUL7MamdNtxIhxditULp3ob6HgYyLMUnsd-xeZ08EPcSwVyM4wgN-REJga4nlNlc94LWzF296K6bnBA --- # bart-base-finetuned-summarization-cnn-ver3 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.9827 - Bertscore-mean-precision: 0.8811 - Bertscore-mean-recall: 0.8554 - Bertscore-mean-f1: 0.8679 - Bertscore-median-precision: 0.8809 - Bertscore-median-recall: 0.8545 - Bertscore-median-f1: 0.8669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bertscore-mean-precision | Bertscore-mean-recall | Bertscore-mean-f1 | Bertscore-median-precision | Bertscore-median-recall | Bertscore-median-f1 | |:-------------:|:-----:|:----:|:---------------:|:------------------------:|:---------------------:|:-----------------:|:--------------------------:|:-----------------------:|:-------------------:| | 3.632 | 1.0 | 5742 | 2.9827 | 0.8811 | 0.8554 | 0.8679 | 0.8809 | 0.8545 | 0.8669 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2