Support SDPA, fix embeddings, output attention probs.
Browse files- modeling.py +54 -34
modeling.py
CHANGED
@@ -374,7 +374,7 @@ class NewEmbeddings(nn.Module):
|
|
374 |
if position_ids is None:
|
375 |
if seq_length > self.position_ids.size(0):
|
376 |
self.register_buffer(
|
377 |
-
"position_ids", torch.arange(seq_length), persistent=False
|
378 |
)
|
379 |
if unpad_inputs:
|
380 |
# [1, cumsum_seq_len]
|
@@ -397,16 +397,19 @@ class NewEmbeddings(nn.Module):
|
|
397 |
if self.type_vocab_size > 0:
|
398 |
if token_type_ids is None:
|
399 |
token_type_ids = position_ids.mul(0)
|
400 |
-
|
401 |
-
|
|
|
|
|
|
|
402 |
|
403 |
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
404 |
-
embeddings
|
405 |
|
406 |
# BERT position
|
407 |
if self.position_embedding_type == "absolute":
|
408 |
position_embeddings = self.position_embeddings(position_ids)
|
409 |
-
embeddings
|
410 |
|
411 |
embeddings = self.LayerNorm(embeddings)
|
412 |
embeddings = self.dropout(embeddings)
|
@@ -449,19 +452,17 @@ class NewAttention(nn.Module):
|
|
449 |
self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
|
450 |
if self.use_memory_efficient_attention:
|
451 |
assert self.memory_efficient_attention is not None, 'please install xformers'
|
452 |
-
if self.config.unpad_inputs:
|
453 |
-
assert self.config.use_memory_efficient_attention, 'unpad only with xformers'
|
454 |
|
455 |
def forward(
|
456 |
self,
|
457 |
hidden_states: torch.Tensor,
|
458 |
attention_bias: torch.FloatTensor,
|
459 |
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
|
|
460 |
attention_scale: Optional[torch.FloatTensor] = None,
|
461 |
head_mask: Optional[torch.FloatTensor] = None,
|
462 |
output_attentions: Optional[bool] = False,
|
463 |
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
|
464 |
-
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
|
465 |
) -> Tuple[torch.Tensor, ...]:
|
466 |
shape_hd = (self.num_attention_heads, self.attention_head_size)
|
467 |
# qkv
|
@@ -504,7 +505,11 @@ class NewAttention(nn.Module):
|
|
504 |
p=self.dropout.p
|
505 |
)
|
506 |
else:
|
507 |
-
|
|
|
|
|
|
|
|
|
508 |
|
509 |
if padding_inputs is not None:
|
510 |
context_layer = unpad_input(context_layer, indices=padding_inputs[0])
|
@@ -542,7 +547,8 @@ class NewAttention(nn.Module):
|
|
542 |
|
543 |
# This is actually dropping out entire tokens to attend to, which might
|
544 |
# seem a bit unusual, but is taken from the original Transformer paper.
|
545 |
-
|
|
|
546 |
|
547 |
# Mask heads if we want to
|
548 |
if head_mask is not None:
|
@@ -551,7 +557,7 @@ class NewAttention(nn.Module):
|
|
551 |
context_layer = torch.matmul(attention_probs, value_states)
|
552 |
|
553 |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
554 |
-
return context_layer
|
555 |
|
556 |
|
557 |
class NewSdpaAttention(NewAttention):
|
@@ -562,11 +568,11 @@ class NewSdpaAttention(NewAttention):
|
|
562 |
"""
|
563 |
def __init__(self, config: NewConfig, **kwargs):
|
564 |
super().__init__(config, **kwargs)
|
565 |
-
torch.backends.cuda.enable_mem_efficient_sdp(False)
|
566 |
-
logger.warning(
|
567 |
-
|
568 |
-
|
569 |
-
)
|
570 |
|
571 |
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
|
572 |
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
@@ -577,12 +583,12 @@ class NewSdpaAttention(NewAttention):
|
|
577 |
dropout_p=self.dropout.p if self.training else 0.0,
|
578 |
)
|
579 |
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
|
580 |
-
return attn_output
|
581 |
|
582 |
|
583 |
NEW_ATTENTION_CLASSES = {
|
584 |
"eager": NewAttention,
|
585 |
-
# "flash_attention_2": , # TODO
|
586 |
"sdpa": NewSdpaAttention,
|
587 |
}
|
588 |
|
@@ -625,8 +631,12 @@ class NewLayer(nn.Module):
|
|
625 |
super().__init__()
|
626 |
if attn_implementation is None:
|
627 |
attn_implementation = config._attn_implementation
|
628 |
-
if
|
629 |
-
use_memory_efficient_attention =
|
|
|
|
|
|
|
|
|
630 |
self.attention = NEW_ATTENTION_CLASSES[attn_implementation](
|
631 |
config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
|
632 |
)
|
@@ -646,12 +656,12 @@ class NewLayer(nn.Module):
|
|
646 |
hidden_states: torch.Tensor,
|
647 |
attention_bias: torch.FloatTensor,
|
648 |
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
|
|
649 |
attention_scale: Optional[torch.FloatTensor] = None,
|
650 |
subset_indices: Optional[torch.LongTensor] = None,
|
651 |
head_mask: Optional[torch.FloatTensor] = None,
|
652 |
output_attentions: Optional[bool] = False,
|
653 |
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
|
654 |
-
padding_inputs: Optional[Tuple] = None,
|
655 |
) -> Tuple[torch.Tensor, ...]:
|
656 |
# Multi head self attention
|
657 |
residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
|
@@ -659,11 +669,11 @@ class NewLayer(nn.Module):
|
|
659 |
hidden_states,
|
660 |
attention_bias,
|
661 |
rope_embeds,
|
|
|
662 |
attention_scale,
|
663 |
head_mask,
|
664 |
output_attentions=output_attentions,
|
665 |
qkv_inputs=qkv_inputs,
|
666 |
-
padding_inputs=padding_inputs,
|
667 |
)
|
668 |
hidden_states = attention_outputs[0]
|
669 |
if self.hidden_dropout is not None:
|
@@ -701,6 +711,7 @@ class NewEncoder(nn.Module):
|
|
701 |
hidden_states: torch.Tensor,
|
702 |
attention_bias: Optional[torch.FloatTensor] = None,
|
703 |
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
|
|
704 |
attention_scale: Optional[torch.FloatTensor] = None,
|
705 |
subset_indices: Optional[torch.LongTensor] = None,
|
706 |
head_mask: Optional[torch.FloatTensor] = None,
|
@@ -728,6 +739,7 @@ class NewEncoder(nn.Module):
|
|
728 |
hidden_states,
|
729 |
attention_bias,
|
730 |
rope_embeds,
|
|
|
731 |
attention_scale,
|
732 |
layer_subset_indices,
|
733 |
layer_head_mask,
|
@@ -737,6 +749,7 @@ class NewEncoder(nn.Module):
|
|
737 |
hidden_states,
|
738 |
attention_bias,
|
739 |
rope_embeds,
|
|
|
740 |
attention_scale,
|
741 |
layer_subset_indices,
|
742 |
layer_head_mask,
|
@@ -792,6 +805,7 @@ class NewPreTrainedModel(PreTrainedModel):
|
|
792 |
config_class = NewConfig
|
793 |
base_model_prefix = "new"
|
794 |
supports_gradient_checkpointing = True
|
|
|
795 |
|
796 |
def _init_weights(self, module):
|
797 |
"""Initialize the weights"""
|
@@ -894,9 +908,7 @@ class NewModel(NewPreTrainedModel):
|
|
894 |
)
|
895 |
|
896 |
batch_size, seq_length = input_shape
|
897 |
-
|
898 |
-
if unpad_inputs:
|
899 |
-
assert self.config.use_memory_efficient_attention
|
900 |
attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length)
|
901 |
else:
|
902 |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
@@ -906,20 +918,29 @@ class NewModel(NewPreTrainedModel):
|
|
906 |
# Invalid shape for attention bias: torch.Size([48, 1, 1, 512]) (expected (48, 12, 512, 512))
|
907 |
attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)
|
908 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
909 |
if self.config.logn_attention_scale:
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
|
|
918 |
|
919 |
encoder_outputs = self.encoder(
|
920 |
embedding_output,
|
921 |
attention_bias=attention_bias,
|
922 |
rope_embeds=rope_embeds,
|
|
|
923 |
attention_scale=attention_scale,
|
924 |
subset_indices=subset_indices,
|
925 |
head_mask=head_mask,
|
@@ -929,7 +950,6 @@ class NewModel(NewPreTrainedModel):
|
|
929 |
)
|
930 |
sequence_output = encoder_outputs[0]
|
931 |
if unpad_inputs and output_padded:
|
932 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
933 |
sequence_output = pad_input(
|
934 |
sequence_output.squeeze(), indices, batch_size, seq_length
|
935 |
)
|
|
|
374 |
if position_ids is None:
|
375 |
if seq_length > self.position_ids.size(0):
|
376 |
self.register_buffer(
|
377 |
+
"position_ids", torch.arange(seq_length, device=embeddings.device), persistent=False
|
378 |
)
|
379 |
if unpad_inputs:
|
380 |
# [1, cumsum_seq_len]
|
|
|
397 |
if self.type_vocab_size > 0:
|
398 |
if token_type_ids is None:
|
399 |
token_type_ids = position_ids.mul(0)
|
400 |
+
else:
|
401 |
+
if self.type_vocab_size < 2:
|
402 |
+
token_type_ids.mul_(0)
|
403 |
+
if unpad_inputs:
|
404 |
+
token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0)
|
405 |
|
406 |
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
407 |
+
embeddings = embeddings + token_type_embeddings
|
408 |
|
409 |
# BERT position
|
410 |
if self.position_embedding_type == "absolute":
|
411 |
position_embeddings = self.position_embeddings(position_ids)
|
412 |
+
embeddings = embeddings + position_embeddings
|
413 |
|
414 |
embeddings = self.LayerNorm(embeddings)
|
415 |
embeddings = self.dropout(embeddings)
|
|
|
452 |
self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
|
453 |
if self.use_memory_efficient_attention:
|
454 |
assert self.memory_efficient_attention is not None, 'please install xformers'
|
|
|
|
|
455 |
|
456 |
def forward(
|
457 |
self,
|
458 |
hidden_states: torch.Tensor,
|
459 |
attention_bias: torch.FloatTensor,
|
460 |
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
461 |
+
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
|
462 |
attention_scale: Optional[torch.FloatTensor] = None,
|
463 |
head_mask: Optional[torch.FloatTensor] = None,
|
464 |
output_attentions: Optional[bool] = False,
|
465 |
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
|
|
|
466 |
) -> Tuple[torch.Tensor, ...]:
|
467 |
shape_hd = (self.num_attention_heads, self.attention_head_size)
|
468 |
# qkv
|
|
|
505 |
p=self.dropout.p
|
506 |
)
|
507 |
else:
|
508 |
+
if output_attentions and isinstance(self, NewSdpaAttention):
|
509 |
+
raise RuntimeError("SDPA do not output attentions")
|
510 |
+
context_layer, attention_probs = self._attention(
|
511 |
+
query_states, key_states, value_states, attention_bias, head_mask
|
512 |
+
)
|
513 |
|
514 |
if padding_inputs is not None:
|
515 |
context_layer = unpad_input(context_layer, indices=padding_inputs[0])
|
|
|
547 |
|
548 |
# This is actually dropping out entire tokens to attend to, which might
|
549 |
# seem a bit unusual, but is taken from the original Transformer paper.
|
550 |
+
if self.dropout.p > 0:
|
551 |
+
attention_probs = self.dropout(attention_probs)
|
552 |
|
553 |
# Mask heads if we want to
|
554 |
if head_mask is not None:
|
|
|
557 |
context_layer = torch.matmul(attention_probs, value_states)
|
558 |
|
559 |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
560 |
+
return context_layer, attention_probs
|
561 |
|
562 |
|
563 |
class NewSdpaAttention(NewAttention):
|
|
|
568 |
"""
|
569 |
def __init__(self, config: NewConfig, **kwargs):
|
570 |
super().__init__(config, **kwargs)
|
571 |
+
# torch.backends.cuda.enable_mem_efficient_sdp(False)
|
572 |
+
# logger.warning(
|
573 |
+
# "Disable memory efficient attention kernel for `NewSdpaAttention`, you can set "
|
574 |
+
# "`use_memory_efficient_attention=True` if it expected to use."
|
575 |
+
# )
|
576 |
|
577 |
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
|
578 |
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
|
|
583 |
dropout_p=self.dropout.p if self.training else 0.0,
|
584 |
)
|
585 |
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
|
586 |
+
return attn_output, None
|
587 |
|
588 |
|
589 |
NEW_ATTENTION_CLASSES = {
|
590 |
"eager": NewAttention,
|
591 |
+
# "flash_attention_2": , # TODO
|
592 |
"sdpa": NewSdpaAttention,
|
593 |
}
|
594 |
|
|
|
631 |
super().__init__()
|
632 |
if attn_implementation is None:
|
633 |
attn_implementation = config._attn_implementation
|
634 |
+
if use_memory_efficient_attention is None:
|
635 |
+
use_memory_efficient_attention = config.use_memory_efficient_attention
|
636 |
+
if use_memory_efficient_attention:
|
637 |
+
if attn_implementation != 'eager':
|
638 |
+
logger.warning_once(f"Override {attn_implementation=} to 'eager' as {use_memory_efficient_attention=}")
|
639 |
+
attn_implementation = 'eager' # Since it will be SDPA by default for torch>=2.1.1
|
640 |
self.attention = NEW_ATTENTION_CLASSES[attn_implementation](
|
641 |
config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
|
642 |
)
|
|
|
656 |
hidden_states: torch.Tensor,
|
657 |
attention_bias: torch.FloatTensor,
|
658 |
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
659 |
+
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
|
660 |
attention_scale: Optional[torch.FloatTensor] = None,
|
661 |
subset_indices: Optional[torch.LongTensor] = None,
|
662 |
head_mask: Optional[torch.FloatTensor] = None,
|
663 |
output_attentions: Optional[bool] = False,
|
664 |
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
|
|
|
665 |
) -> Tuple[torch.Tensor, ...]:
|
666 |
# Multi head self attention
|
667 |
residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
|
|
|
669 |
hidden_states,
|
670 |
attention_bias,
|
671 |
rope_embeds,
|
672 |
+
padding_inputs,
|
673 |
attention_scale,
|
674 |
head_mask,
|
675 |
output_attentions=output_attentions,
|
676 |
qkv_inputs=qkv_inputs,
|
|
|
677 |
)
|
678 |
hidden_states = attention_outputs[0]
|
679 |
if self.hidden_dropout is not None:
|
|
|
711 |
hidden_states: torch.Tensor,
|
712 |
attention_bias: Optional[torch.FloatTensor] = None,
|
713 |
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
714 |
+
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
|
715 |
attention_scale: Optional[torch.FloatTensor] = None,
|
716 |
subset_indices: Optional[torch.LongTensor] = None,
|
717 |
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
739 |
hidden_states,
|
740 |
attention_bias,
|
741 |
rope_embeds,
|
742 |
+
padding_inputs,
|
743 |
attention_scale,
|
744 |
layer_subset_indices,
|
745 |
layer_head_mask,
|
|
|
749 |
hidden_states,
|
750 |
attention_bias,
|
751 |
rope_embeds,
|
752 |
+
padding_inputs,
|
753 |
attention_scale,
|
754 |
layer_subset_indices,
|
755 |
layer_head_mask,
|
|
|
805 |
config_class = NewConfig
|
806 |
base_model_prefix = "new"
|
807 |
supports_gradient_checkpointing = True
|
808 |
+
_supports_sdpa = True
|
809 |
|
810 |
def _init_weights(self, module):
|
811 |
"""Initialize the weights"""
|
|
|
908 |
)
|
909 |
|
910 |
batch_size, seq_length = input_shape
|
911 |
+
if unpad_inputs and self.config.use_memory_efficient_attention:
|
|
|
|
|
912 |
attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length)
|
913 |
else:
|
914 |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
|
|
918 |
# Invalid shape for attention bias: torch.Size([48, 1, 1, 512]) (expected (48, 12, 512, 512))
|
919 |
attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)
|
920 |
|
921 |
+
padding_inputs = None
|
922 |
+
if unpad_inputs and (output_padded or not self.config.use_memory_efficient_attention):
|
923 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
924 |
+
if not self.config.use_memory_efficient_attention:
|
925 |
+
padding_inputs = (indices, *input_shape)
|
926 |
+
|
927 |
+
attention_scale = None
|
928 |
if self.config.logn_attention_scale:
|
929 |
+
logger.warning_once("TODO: logn_attention_scale")
|
930 |
+
# # attention scale log_512(input_len)
|
931 |
+
# attention_scale = attention_mask.sum(1).log() / torch.tensor(self.config.max_position_embeddings).log()
|
932 |
+
# # inference-time logn scale need clip 1
|
933 |
+
# if self.config.logn_attention_clip1:
|
934 |
+
# attention_scale.clip_(1)
|
935 |
+
# attention_scale = attention_scale[:, None, None, None]
|
936 |
+
# else:
|
937 |
+
# attention_scale = None
|
938 |
|
939 |
encoder_outputs = self.encoder(
|
940 |
embedding_output,
|
941 |
attention_bias=attention_bias,
|
942 |
rope_embeds=rope_embeds,
|
943 |
+
padding_inputs=padding_inputs,
|
944 |
attention_scale=attention_scale,
|
945 |
subset_indices=subset_indices,
|
946 |
head_mask=head_mask,
|
|
|
950 |
)
|
951 |
sequence_output = encoder_outputs[0]
|
952 |
if unpad_inputs and output_padded:
|
|
|
953 |
sequence_output = pad_input(
|
954 |
sequence_output.squeeze(), indices, batch_size, seq_length
|
955 |
)
|