Create README_zh.md
Browse files- README_zh.md +81 -0
README_zh.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
[English](./README.md) | **中文**
|
6 |
+
|
7 |
+
## GTE 新模型代码实现
|
8 |
+
|
9 |
+
此模型为 BERT-like 编码器模型,加入了以下优化:
|
10 |
+
|
11 |
+
1. 使用 RoPE [^1] 旋转位置编码替换 absolute position embedding。
|
12 |
+
2. 使用 GLU (Gated Linear Unit) [^2] 替换普通的激活函数。
|
13 |
+
3. 设置 attention dropout 为 0 以方便应用 `xformers` 和 `flash_attn` 等优化。
|
14 |
+
4. 使用 Unpadding 技术去除对 padding token 的无用计算 [^3](默认关闭,需要结合 `flash_attn` 或 `xformers` 使用来获得最高加速)。
|
15 |
+
5. 设置 `vocab_size % 64 = 0`。
|
16 |
+
|
17 |
+
|
18 |
+
### 推荐:启用 Unpadding 和 xformers 加速
|
19 |
+
|
20 |
+
此代码支持使用 `xformers` 加速 attention 计算,可以根据设备类型自动选择优化实现,比如 `flash_attn`。通过 `xformers`,在不能支持 `flash_attn` 的旧设备比如`V100`上也可以获得极大的加速。
|
21 |
+
|
22 |
+
首先,安装 `xformers`(需要预先安装`pytorch`):
|
23 |
+
```
|
24 |
+
if pytorch 使用 conda 安装 :
|
25 |
+
conda install xformers -c xformers
|
26 |
+
|
27 |
+
elif pytorch 使用 pip 安装 :
|
28 |
+
# cuda 11.8 version
|
29 |
+
pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu118
|
30 |
+
# cuda 12.1 version
|
31 |
+
pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu121
|
32 |
+
```
|
33 |
+
更多信息可参考 [installing-xformers](https://github.com/facebookresearch/xformers?tab=readme-ov-file#installing-xformers)。
|
34 |
+
|
35 |
+
然后,加载模型时设置 `unpad_inputs` 和 `use_memory_efficient_attention` 为 `true`,并启用 `fp16` 混合精度计算,即可获得最快加速。
|
36 |
+
|
37 |
+
```python
|
38 |
+
import torch
|
39 |
+
from transformers import AutoModel, AutoTokenizer
|
40 |
+
|
41 |
+
path = 'Alibaba-NLP/gte-base-en-v1.5'
|
42 |
+
device = torch.device('cuda')
|
43 |
+
tokenzier = AutoTokenizer.from_pretrained(path)
|
44 |
+
model = AutoModel.from_pretrained(
|
45 |
+
path,
|
46 |
+
trust_remote_code=True,
|
47 |
+
unpad_inputs=True,
|
48 |
+
use_memory_efficient_attention=True,
|
49 |
+
).to(device)
|
50 |
+
|
51 |
+
with torch.autocast(device_type=device.type, dtype=torch.float16): # 或bfloat16
|
52 |
+
with torch.inference_mode():
|
53 |
+
outputs = model(**inputs.to(device))
|
54 |
+
|
55 |
+
```
|
56 |
+
也可以直接修改模型的 `config.json` 中 `unpad_inputs` 和 `use_memory_efficient_attention` 为 `true`,省去代码中的设置。
|
57 |
+
|
58 |
+
|
59 |
+
---
|
60 |
+
|
61 |
+
<details>
|
62 |
+
<summary> 与 nomic-embed 和 nomicBERT 的关系 </summary>
|
63 |
+
|
64 |
+
可能有人会质疑我们的原创性,认为这只是对 `nomicBERT` 的复刻。
|
65 |
+
在此澄清,我们是工作与 `nomicBERT` 平行并源自相同的想法。
|
66 |
+
|
67 |
+
应用 RoPE 和 GLU 到 BERT 上支持长文本是一个简单直接的想法。我们从2023年8月开始了探索。在2023年11月,完成了 `gte-base-en-v1.1` 的开发,然后我去忙别的课题的ACL投稿了。
|
68 |
+
|
69 |
+
`nomic-embed` [^4] 的发布让我们感受到了压力,也获得了更多资源得以加速继续开发这一项目。如果没有 `nomicai` 的杰出工作,`gte-v1.5` 系列可能还要延期很久。感谢!
|
70 |
+
|
71 |
+
</details>
|
72 |
+
|
73 |
+
---
|
74 |
+
|
75 |
+
[^1]: Su, Jianlin, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. "Roformer: Enhanced transformer with rotary position embedding." Neurocomputing 568 (2024): 127063.
|
76 |
+
|
77 |
+
[^2]: Shazeer, Noam. "Glu variants improve transformer." arXiv preprint arXiv:2002.05202 (2020).
|
78 |
+
|
79 |
+
[^3]: Portes, Jacob, Alexander Trott, Sam Havens, Daniel King, Abhinav Venigalla, Moin Nadeem, Nikhil Sardana, Daya Khudia, and Jonathan Frankle. "MosaicBERT: A Bidirectional Encoder Optimized for Fast Pretraining." Advances in Neural Information Processing Systems 36 (2024).
|
80 |
+
|
81 |
+
[^4]: Nussbaum, Zach, John X. Morris, Brandon Duderstadt, and Andriy Mulyar. "Nomic Embed: Training a Reproducible Long Context Text Embedder." arXiv preprint arXiv:2402.01613 (2024).
|