File size: 4,027 Bytes
0d3cf39 b7ea01b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
---
**English** | [中文](./README_zh.md)
## Code implementation of new GTE embeddings
This model is a BERT-like encoder with the following optimizations implemented:
1. Replacing absolute position embeddings with RoPE [^1].
2. Substituting the conventional activation functions with Gated Linear Units (GLU) [^2].
3. Setting attention dropout to 0 to use `xformers` and `flash_attn`.
4. Using unpadding to eliminate the needless computations for padding tokens [^3]. (this is off by default and should be used in conjunction with `xformers` for optimal acceleration).
5. Setting `vocab_size` as a multiple of 64.
### Recommendation: Enable Unpadding and Acceleration with `xformers`
This code supports the acceleration of attention computations using `xformers`, which can automatically choose the optimal implementation based on the type of device, such as `flash_attn`. Therefore, we can also achieve significant acceleration on old devices like the V100.
Firstly, install `xformers` (with `pytorch` pre-installed):
```
if pytorch is installed using conda:
conda install xformers -c xformers
elif pytorch is installed using pip:
# cuda 11.8 version
pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu118
# cuda 12.1 version
pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu121
```
For more information, refer to [Installing xformers](https://github.com/facebookresearch/xformers?tab=readme-ov-file#installing-xformers).
Then, when loading the model, set `unpad_inputs` and `use_memory_efficient_attention` to `true`, and enable `fp16` mixed precision computation to achieve the fastest acceleration.
```python
import torch
from transformers import AutoModel, AutoTokenizer
path = 'Alibaba-NLP/gte-base-en-v1.5'
device = torch.device('cuda')
tokenzier = AutoTokenizer.from_pretrained(path)
model = AutoModel.from_pretrained(
path,
trust_remote_code=True,
unpad_inputs=True,
use_memory_efficient_attention=True,
).to(device)
with torch.autocast(device_type=device.type, dtype=torch.float16): # or bfloat16
with torch.inference_mode():
outputs = model(**inputs.to(device))
```
Alternatively, you can directly modify the `unpad_inputs` and `use_memory_efficient_attention` settings to `true` in the model's `config.json`, eliminating the need to set them in the code.
---
<details>
<summary> Clarification of Relationship with nomic-embed and nomicBERT </summary>
One may question the originality of our work and consider it a mere replication of `nomicBERT`. To clarify, our work is parallel but stems from the same idea as `nomicBERT`.
Applying RoPE and GLU to BERT to support longer texts is a straightforward idea. Our exploration of the transformer++ encoder (i.e., BERT + RoPE + GLU) began in August 2023.
And by November 2023, we had completed the `gte-base-en-v1.1`. Then, I went on to prepare for the ACL submission of the other project...
The release of `nomic-embed` [^4] brought to our attention the pressure, as well as provided us with more resources, which allowed us to continue with this project.
Without the outstanding work of `nomicai`, the release of `gte-v1.5` could have been delayed much longer. Thanks!
</details>
---
[^1]: Su, Jianlin, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. "Roformer: Enhanced transformer with rotary position embedding." Neurocomputing 568 (2024): 127063.
[^2]: Shazeer, Noam. "Glu variants improve transformer." arXiv preprint arXiv:2002.05202 (2020).
[^3]: Portes, Jacob, Alexander Trott, Sam Havens, Daniel King, Abhinav Venigalla, Moin Nadeem, Nikhil Sardana, Daya Khudia, and Jonathan Frankle. "MosaicBERT: A Bidirectional Encoder Optimized for Fast Pretraining." Advances in Neural Information Processing Systems 36 (2024).
[^4]: Nussbaum, Zach, John X. Morris, Brandon Duderstadt, and Andriy Mulyar. "Nomic Embed: Training a Reproducible Long Context Text Embedder." arXiv preprint arXiv:2402.01613 (2024). |