File size: 12,727 Bytes
c9c9e10
 
 
 
 
 
 
 
50bc194
 
2e7d402
 
c9c9e10
 
 
 
 
 
1fd1a1f
c9c9e10
 
 
 
 
 
 
 
 
 
 
1fd1a1f
 
c9c9e10
1fd1a1f
da4f0a2
1fd1a1f
c9c9e10
 
 
50bc194
 
 
 
 
 
 
 
c9c9e10
 
50bc194
c9c9e10
 
 
 
 
 
 
 
 
 
 
50bc194
c9c9e10
50bc194
c9c9e10
 
 
 
 
 
 
 
 
 
 
50bc194
c9c9e10
 
 
 
 
50bc194
c9c9e10
 
 
50bc194
 
 
 
 
 
 
 
 
 
 
c9c9e10
50bc194
 
 
c9c9e10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da4f0a2
c9c9e10
 
 
 
 
 
7ca8b4c
c9c9e10
 
3672cc3
c9c9e10
 
 
 
 
 
 
 
 
3672cc3
c9c9e10
 
 
1fd1a1f
 
c9c9e10
3672cc3
c9c9e10
1fd1a1f
 
c9c9e10
1fd1a1f
 
 
c9c9e10
e9e0ece
 
 
 
 
 
 
 
c9c9e10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
---
license: apache-2.0
language:
- en
base_model:
- answerdotai/ModernBERT-base
pipeline_tag: sentence-similarity
library_name: transformers
tags:
- sentence-transformers
- mteb
- embedding
---

# gte-modernbert-base

We are excited to introduce the `gte-modernbert` series of models, which are built upon the latest modernBERT pre-trained encoder-only foundation models. The `gte-modernbert` series models include both text embedding models and rerank models.

The `gte-modernbert` models demonstrates competitive performance in several text embedding and text retrieval evaluation tasks when compared to similar-scale models from the current open-source community. This includes assessments such as MTEB, LoCO, and COIR evaluation.

## Model Overview

- Developed by: Tongyi Lab, Alibaba Group
- Model Type: Text Embedding
- Primary Language: English
- Model Size: 149M
- Max Input Length: 8192 tokens
- Output Dimension: 768

### Model list


|                                         Models                                         | Language |       Model Type       | Model Size | Max Seq. Length | Dimension | MTEB-en | BEIR | LoCo | CoIR |
|:--------------------------------------------------------------------------------------:|:--------:|:----------------------:|:----------:|:---------------:|:---------:|:-------:|:----:|:----:|:----:|
|  [`gte-modernbert-base`](https://huggingface.co./Alibaba-NLP/gte-modernbert-base)   | English  |     text embedding     |    149M    |      8192       |    768    |  64.38  | 55.33 | 87.57 | 79.31 | 
| [`gte-reranker-modernbert-base`](https://huggingface.co./Alibaba-NLP/gte-reranker-modernbert-base)  | English  | text reranker     |    149M    |    8192    |     -     |  - | 56.19 | 90.68 | 79.99 |

## Usage

> [!TIP]
> For `transformers` and `sentence-transformers`, if your GPU supports it, the efficient Flash Attention 2 will be used automatically if you have `flash_attn` installed. It is not mandatory.
> 
> ```bash
> pip install flash_attn
> ```

Use with `transformers`

```python
# Requires transformers>=4.48.0

import torch.nn.functional as F
from transformers import AutoModel, AutoTokenizer

input_texts = [
    "what is the capital of China?",
    "how to implement quick sort in python?",
    "Beijing",
    "sorting algorithms"
]

model_path = "Alibaba-NLP/gte-modernbert-base"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModel.from_pretrained(model_path)

# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=8192, padding=True, truncation=True, return_tensors='pt')

outputs = model(**batch_dict)
embeddings = outputs.last_hidden_state[:, 0]
 
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
# [[42.89073944091797, 71.30911254882812, 33.664554595947266]]
```

Use with `sentence-transformers`:

```python
# Requires transformers>=4.48.0
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

input_texts = [
    "what is the capital of China?",
    "how to implement quick sort in python?",
    "Beijing",
    "sorting algorithms"
]

model = SentenceTransformer("Alibaba-NLP/gte-modernbert-base")
embeddings = model.encode(input_texts)
print(embeddings.shape)
# (4, 768)

similarities = cos_sim(embeddings[0], embeddings[1:])
print(similarities)
# tensor([[0.4289, 0.7131, 0.3366]])
```

Use with `transformers.js`:

```js
// npm i @xenova/transformers
import { pipeline, dot } from '@xenova/transformers';

// Create feature extraction pipeline
const extractor = await pipeline('feature-extraction', 'Alibaba-NLP/gte-modernbert-base', {
    quantized: false, // Comment out this line to use the quantized version
});

// Generate sentence embeddings
const sentences = [
    "what is the capital of China?",
    "how to implement quick sort in python?",
    "Beijing",
    "sorting algorithms"
]
const output = await extractor(sentences, { normalize: true, pooling: 'cls' });

// Compute similarity scores
const [source_embeddings, ...document_embeddings ] = output.tolist();
const similarities = document_embeddings.map(x => 100 * dot(source_embeddings, x));
console.log(similarities);
```

## Training Details

The `gte-modernbert` series of models follows the training scheme of the previous [GTE models](https://huggingface.co./collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469), with the only difference being that the pre-training language model base has been replaced from [GTE-MLM](https://huggingface.co./Alibaba-NLP/gte-en-mlm-base) to [ModernBert](https://huggingface.co./answerdotai/ModernBERT-base). For more training details, please refer to our paper: [mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval](https://aclanthology.org/2024.emnlp-industry.103/)

## Evaluation

### MTEB

The results of other models are retrieved from [MTEB leaderboard](https://huggingface.co./spaces/mteb/leaderboard). Given that all models in the `gte-modernbert` series have a size of less than 1B parameters, we focused exclusively on the results of models under 1B from the MTEB leaderboard.

|                                            Model Name                                            | Param Size (M) | Dimension | Sequence Length | Average (56) | Class. (12) | Clust. (11) | Pair Class. (3) | Reran. (4) | Retr. (15) |  STS (10)   | Summ. (1) |
|:------------------------------------------------------------------------------------------------:|:--------------:|:---------:|:---------------:|:------------:|:-----------:|:---:|:---:|:---:|:---:|:-----------:|:--------:|
|        [mxbai-embed-large-v1](https://huggingface.co./mixedbread-ai/mxbai-embed-large-v1)         |      335       |   1024    |       512       |    64.68     |    75.64    | 46.71 | 87.2 | 60.11 | 54.39 |     85      |   32.71  |
| [multilingual-e5-large-instruct](https://huggingface.co./intfloat/multilingual-e5-large-instruct) |      560       |   1024    |       514       |    64.41     |    77.56    | 47.1 | 86.19 | 58.58 | 52.47 |    84.78    |   30.39  |
|                [bge-large-en-v1.5](https://huggingface.co./BAAI/bge-large-en-v1.5)                |      335       |   1024    |       512       |    64.23     |    75.97    | 46.08 | 87.12 | 60.03 | 54.29 |    83.11    |   31.61  |
|             [gte-base-en-v1.5](https://huggingface.co./Alibaba-NLP/gte-base-en-v1.5)              |      137       |    768    |      8192       |  64.11   |    77.17    | 46.82 | 85.33 | 57.66 | 54.09 |    81.97    |   31.17  |
|                 [bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5)                 |      109       |    768    |       512       |    63.55     |    75.53    | 45.77 | 86.55 | 58.86 | 53.25 |    82.4     |   31.07  |
|            [gte-large-en-v1.5](https://huggingface.co./Alibaba-NLP/gte-large-en-v1.5)             |      409       |   1024    |      8192       |    65.39     |    77.75    | 47.95 | 84.63 | 58.50 | 57.91 |    81.43    |   30.91  |
| [modernbert-embed-base](https://huggingface.co./nomic-ai/modernbert-embed-base) |      149       |    768    |      8192       |    62.62     |    74.31    | 44.98 | 83.96 | 56.42 | 52.89 |    81.78    |   31.39  |
| [nomic-embed-text-v1.5](https://huggingface.co./nomic-ai/nomic-embed-text-v1.5) |                |    768    |      8192       |    62.28     |   	73.55    |	43.93 |	84.61 |	55.78 | 53.01|    81.94    |   30.4   |
| [gte-multilingual-base](https://huggingface.co./Alibaba-NLP/gte-multilingual-base) |      305       |    768    |       8192      |     61.4     | 70.89 | 44.31 | 84.24 | 57.47 |51.08 |    82.11    |   30.58  | 
| [jina-embeddings-v3](https://huggingface.co./jinaai/jina-embeddings-v3) | 572 |   1024    |      8192  |       65.51 | 82.58 |45.21 |84.01 |58.13 |53.88 | 85.81 |   29.71  | 
| [**gte-modernbert-base**](https://huggingface.co./Alibaba-NLP/gte-modernbert-base) | 149 |   1024    |      8192  |   **64.38** | **76.99** | **46.47** | **85.93** | **59.24** | **55.33** | **81.57** | **30.68** |


### LoCo (Long Document Retrieval)(NDCG@10)

| Model Name |  Dimension | Sequence Length | Average (5) | QsmsumRetrieval | SummScreenRetrieval | QasperAbastractRetrieval | QasperTitleRetrieval |  GovReportRetrieval |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [gte-qwen1.5-7b](https://huggingface.co./Alibaba-NLP/gte-qwen1.5-7b) | 4096 | 32768 |  87.57 | 49.37 | 93.10 | 99.67 | 97.54 | 98.21 | 
| [gte-large-v1.5](https://huggingface.co./Alibaba-NLP/gte-large-v1.5) |1024 | 8192 | 86.71 | 44.55 | 92.61 | 99.82 | 97.81 | 98.74 |
| [gte-base-v1.5](https://huggingface.co./Alibaba-NLP/gte-base-v1.5) | 768 | 8192 | 87.44 | 49.91  | 91.78 | 99.82 | 97.13 | 98.58 |
| [gte-modernbert-base](https://huggingface.co./Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 88.88 | 54.45 | 93.00 | 99.82 | 98.03 | 98.70 |
| [gte-reranker-modernbert-base](https://huggingface.co./Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 90.68 | 70.86 | 94.06 | 99.73 | 99.11 | 89.67 | 

### COIR (Code Retrieval Task)(NDCG@10)

| Model Name | Dimension | Sequence Length | Average(20) | CodeSearchNet-ccr-go | CodeSearchNet-ccr-java | CodeSearchNet-ccr-javascript | CodeSearchNet-ccr-php | CodeSearchNet-ccr-python | CodeSearchNet-ccr-ruby | CodeSearchNet-go | CodeSearchNet-java | CodeSearchNet-javascript | CodeSearchNet-php | CodeSearchNet-python | CodeSearchNet-ruby | apps | codefeedback-mt | codefeedback-st | codetrans-contest | codetrans-dl | cosqa | stackoverflow-qa | synthetic-text2sql |
|:----:|:---:|:---:|:---:|:---:| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [gte-modernbert-base](https://huggingface.co./Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 79.31	| 94.15	| 93.57 |	94.27 |	91.51	| 93.93	| 90.63	| 88.32 |	83.27	| 76.05	| 85.12	| 88.16	| 77.59	| 57.54	| 82.34	| 85.95	| 71.89	 | 35.46	| 43.47	| 91.2	| 61.87 |
| [gte-reranker-modernbert-base](https://huggingface.co./Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 79.99	| 96.43	| 96.88	| 98.32 | 91.81	| 97.7	| 91.96 |	88.81	| 79.71	| 76.27	| 89.39	| 98.37	| 84.11	| 47.57	| 83.37	| 88.91	| 49.66	| 36.36	| 44.37	| 89.58	| 64.21 |

### BEIR(NDCG@10)

| Model Name | Dimension | Sequence Length | Average(15) | ArguAna | ClimateFEVER | CQADupstackAndroidRetrieval | DBPedia | FEVER | FiQA2018 | HotpotQA | MSMARCO | NFCorpus | NQ | QuoraRetrieval | SCIDOCS | SciFact | Touche2020 | TRECCOVID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [gte-modernbert-base](https://huggingface.co./Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 55.33 | 72.68 | 37.74 | 42.63 | 41.79 | 91.03 | 48.81 | 69.47 | 40.9 | 36.44 | 57.62 | 88.55 | 21.29 | 77.4 | 21.68 | 81.95 |
| [gte-reranker-modernbert-base](https://huggingface.co./Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 56.73 | 69.03 | 37.79 | 44.68 | 47.23 | 94.54 | 49.81 | 78.16 | 45.38 | 30.69 | 64.57 | 87.77 | 20.60 | 73.57 | 27.36 | 79.89 |



## Hiring

We have open positions for **Research Interns** and **Full-Time Researchers** to join our team at Tongyi Lab. 
We are seeking passionate individuals with expertise in representation learning, LLM-driven information retrieval, Retrieval-Augmented Generation (RAG), and agent-based systems. 
Our team is located in the vibrant cities of **Beijing** and **Hangzhou**.
If you are driven by curiosity and eager to make a meaningful impact through your work, we would love to hear from you. Please submit your resume along with a brief introduction to <a href="mailto:[email protected]">[email protected]</a>.


## Citation

If you find our paper or models helpful, feel free to give us a cite.

```
@inproceedings{zhang2024mgte,
  title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
  author={Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Wen and Dai, Ziqi and Tang, Jialong and Lin, Huan and Yang, Baosong and Xie, Pengjun and Huang, Fei and others},
  booktitle={Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track},
  pages={1393--1412},
  year={2024}
}

@article{li2023towards,
  title={Towards general text embeddings with multi-stage contrastive learning},
  author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
  journal={arXiv preprint arXiv:2308.03281},
  year={2023}
}
```