File size: 19,866 Bytes
b51f50c 22684ef 0738663 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 22684ef 1e5f944 e74fea6 b68d6fd e74fea6 d8f8a5c 1e5f944 d8f8a5c 22684ef d8f8a5c 22684ef d8f8a5c 22684ef d8f8a5c b51f50c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
---
library_name: transformers
tags: []
---
---
# Fine-Tuning LLaMA-2-7b with QLoRA on Custom Dataset
This repository provides a setup and script for fine-tuning the LLaMA-2-7b model using QLoRA (Quantized Low-Rank Adaptation) with custom datasets. The script is designed for efficiency and flexibility in training large language models (LLMs) by leveraging advanced techniques such as 4-bit quantization and LoRA.
## Overview
The script fine-tunes a pre-trained LLaMA-2-7b model using a custom dataset, applying QLoRA techniques to optimize performance. It utilizes the `transformers`, `datasets`, `peft`, and `trl` libraries for model management, data processing, and training. The setup includes support for mixed precision training, gradient checkpointing, and advanced quantization techniques to enhance the efficiency of the fine-tuning process.
## Components
### 1. Dependencies
Ensure the following libraries are installed:
- `torch`
- `datasets`
- `transformers`
- `peft`
- `trl`
Install them using pip if they are not already available:
```bash
pip install torch datasets transformers peft trl
```
### 2. Model and Dataset
- **Model**: The base model used is `LLaMA-2-7b`. The script loads this model from a specified local directory.
- **Dataset**: The training data is loaded from a specified directory. The dataset should be formatted in a way that the `"text"` field contains the training examples.
### 3. QLoRA Configuration
QLoRA parameters are used to configure the quantization and adaptation process:
- **LoRA Attention Dimension (`lora_r`)**: 64
- **LoRA Alpha Parameter (`lora_alpha`)**: 16
- **LoRA Dropout Probability (`lora_dropout`)**: 0.1
### 4. BitsAndBytes Configuration
Quantization settings for the model:
- **Use 4-bit Precision**: True
- **Compute Data Type**: `float16`
- **Quantization Type**: `nf4`
- **Nested Quantization**: False
### 5. Training Configuration
Training parameters are defined as follows:
- **Output Directory**: `./results`
- **Number of Epochs**: 300
- **Batch Size**: 4
- **Gradient Accumulation Steps**: 1
- **Learning Rate**: 2e-4
- **Weight Decay**: 0.001
- **Optimizer**: `paged_adamw_32bit`
- **Learning Rate Scheduler**: `cosine`
- **Gradient Clipping**: 0.3
- **Warmup Ratio**: 0.03
- **Logging Steps**: 25
- **Save Steps**: 0
### 6. Training and Evaluation
The script includes preprocessing of the dataset, model initialization with QLoRA, and training using `SFTTrainer` from the `trl` library. It supports mixed precision training and gradient checkpointing to enhance training efficiency.
### 7. Usage Instructions
1. **Update File Paths**: Adjust `model_name`, `dataset_name`, and `new_model` paths according to your environment.
2. **Run the Script**: Execute the script in your Python environment to start the fine-tuning process.
```bash
python fine_tune_llama.py
```
3. **Monitor Training**: Use TensorBoard or similar tools to monitor the training progress.
### 8. Model Saving
After training, the model is saved to the specified directory (`new_model`). This trained model can be loaded for further evaluation or deployment.
## Example Configuration
Hereβs an example configuration used for fine-tuning:
__hint__: the base model is: NousResearch/Llama-2-7b-chat-hf
__hint__: the dataset is: mlabonne/guanaco-llama2-1k
__hint__: I saved them on my local machine then laod them! you can directly download them from huggingface
```python
model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf" # the base model is: NousResearch/Llama-2-7b-chat-hf
dataset_name = "/data/bio-eng-llm/llm_repo/mlabonne/guanaco-llama2-1k" # the dataset is: mlabonne/guanaco-llama2-1k
new_model = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"
lora_r = 64
lora_alpha = 16
lora_dropout = 0.1
use_4bit = True
bnb_4bit_compute_dtype = "float16"
bnb_4bit_quant_type = "nf4"
use_nested_quant = False
output_dir = "./results"
num_train_epochs = 300
fp16 = False
bf16 = False
per_device_train_batch_size = 4
gradient_accumulation_steps = 1
gradient_checkpointing = True
max_grad_norm = 0.3
learning_rate = 2e-4
weight_decay = 0.001
optim = "paged_adamw_32bit"
lr_scheduler_type = "cosine"
max_steps = -1
warmup_ratio = 0.03
group_by_length = True
save_steps = 0
logging_steps = 25
```
# The entire Python training module:
```python
import os
import torch
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
TrainingArguments,
pipeline,
logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer
import sys
import os
cwd = os.getcwd()
# sys.path.append(cwd + '/my_directory')
sys.path.append(cwd)
def setting_directory(depth):
current_dir = os.path.abspath(os.getcwd())
root_dir = current_dir
for i in range(depth):
root_dir = os.path.abspath(os.path.join(root_dir, os.pardir))
sys.path.append(os.path.dirname(root_dir))
return root_dir
#################################
#S:\Llavar_repo\LLaVA\NousResearch\Llama-2-7b-chat-hf
# The model that you want to train from the Hugging Face hub
model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf"
#model_name = setting_directory(2) + "\\Llavar_repo\\LLaVA\NousResearch\\Llama-2-7b-chat-hf"
# The instruction dataset to use
dataset_name = "/data/bio-eng-llm/llm_repo/mlabonne/guanaco-llama2-1k"
# Fine-tuned model name
new_model = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"
################################################################################
# QLoRA parameters
################################################################################
# LoRA attention dimension
lora_r = 64
# Alpha parameter for LoRA scaling
lora_alpha = 16
# Dropout probability for LoRA layers
lora_dropout = 0.1
################################################################################
# bitsandbytes parameters
################################################################################
# Activate 4-bit precision base model loading
use_4bit = True
# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"
# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"
# Activate nested quantization for 4-bit base models (double quantization)
use_nested_quant = False
################################################################################
# TrainingArguments parameters
################################################################################
# Output directory where the model predictions and checkpoints will be stored
output_dir = "./results"
# Number of training epochs
num_train_epochs = 300
# Enable fp16/bf16 training (set bf16 to True with an A100)
fp16 = False
bf16 = False
# Batch size per GPU for training
per_device_train_batch_size = 4
# Batch size per GPU for evaluation
per_device_eval_batch_size = 4
# Number of update steps to accumulate the gradients for
gradient_accumulation_steps = 1
# Enable gradient checkpointing
gradient_checkpointing = True
# Maximum gradient normal (gradient clipping)
max_grad_norm = 0.3
# Initial learning rate (AdamW optimizer)
learning_rate = 2e-4
# Weight decay to apply to all layers except bias/LayerNorm weights
weight_decay = 0.001
# Optimizer to use
optim = "paged_adamw_32bit"
# Learning rate schedule
lr_scheduler_type = "cosine"
# Number of training steps (overrides num_train_epochs)
max_steps = -1
# Ratio of steps for a linear warmup (from 0 to learning rate)
warmup_ratio = 0.03
# Group sequences into batches with same length
# Saves memory and speeds up training considerably
group_by_length = True
# Save checkpoint every X updates steps
save_steps = 0
# Log every X updates steps
logging_steps = 25
################################################################################
# SFT parameters
################################################################################
# Maximum sequence length to use
max_seq_length = None
# Pack multiple short examples in the same input sequence to increase efficiency
packing = False
# Load the entire model on the GPU 0
device_map = {"": 0}
################################################################################
# Load dataset (you can process it here)
dataset = load_dataset(dataset_name, split="train")
print(dataset[0].keys()) # This will print all the field names in your dataset
# Load tokenizer and model with QLoRA configuration
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
bnb_config = BitsAndBytesConfig(
load_in_4bit=use_4bit,
bnb_4bit_quant_type=bnb_4bit_quant_type,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=use_nested_quant,
)
# Check GPU compatibility with bfloat16
if compute_dtype == torch.float16 and use_4bit:
major, _ = torch.cuda.get_device_capability()
if major >= 8:
print("=" * 80)
print("Your GPU supports bfloat16: accelerate training with bf16=True")
print("=" * 80)
# Load base model
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map=device_map
)
model.config.use_cache = False
model.config.pretraining_tp = 1
# Load LLaMA tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training
# Load LoRA configuration
peft_config = LoraConfig(
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
r=lora_r,
bias="none",
task_type="CAUSAL_LM",
)
# Set training parameters
training_arguments = TrainingArguments(
output_dir=output_dir,
num_train_epochs=num_train_epochs,
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
optim=optim,
save_steps=save_steps,
logging_steps=logging_steps,
learning_rate=learning_rate,
weight_decay=weight_decay,
fp16=fp16,
bf16=bf16,
max_grad_norm=max_grad_norm,
max_steps=max_steps,
warmup_ratio=warmup_ratio,
group_by_length=group_by_length,
lr_scheduler_type=lr_scheduler_type,
report_to="tensorboard"
)
# Set supervised fine-tuning parameters
def preprocess_function(examples):
return tokenizer(examples["text"], truncation=True, max_length=512)
tokenized_dataset = dataset.map(preprocess_function, batched=True)
trainer = SFTTrainer(
model=model,
train_dataset=tokenized_dataset,
peft_config=peft_config,
tokenizer=tokenizer,
args=training_arguments,
packing=packing,
)
# Train model
trainer.train()
# Save trained model
trainer.model.save_pretrained(new_model)
```
# Testing the fine tuned model on the dataset
```python
import os
import torch
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
TrainingArguments,
pipeline,
logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer
import sys
import os
base_model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf" # The base model you fine-tuned
cwd = os.getcwd()
# sys.path.append(cwd + '/my_directory')
sys.path.append(cwd)
def setting_directory(depth):
current_dir = os.path.abspath(os.getcwd())
root_dir = current_dir
for i in range(depth):
root_dir = os.path.abspath(os.path.join(root_dir, os.pardir))
sys.path.append(os.path.dirname(root_dir))
return root_dir
# The instruction dataset to use
dataset_name = "/data/bio-eng-llm/llm_repo/mlabonne/guanaco-llama2-1k"
# Fine-tuned model name
new_model = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"
############################
############################ Loading the fine tunned model
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# Base model path (you've trained this model using PEFT)
base_model_name = "NousResearch/Llama-2-7b-chat-hf"
# Load the base model and tokenizer
model = AutoModelForCausalLM.from_pretrained(base_model_name)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
# Path to the directory containing adapter_config.json and adapter_model.safetensors
fine_tuned_model_path = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"
# Load the fine-tuned model (PEFT adapter)
model = PeftModel.from_pretrained(model, fine_tuned_model_path)
print(model)
####################################################
####################################################
####################################################
import os
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import json
# Define paths
base_model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf"
fine_tuned_model_path = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"
dataset_name = "/data/bio-eng-llm/llm_repo/mlabonne/guanaco-llama2-1k"
# Load the dataset
dataset = load_dataset(dataset_name, split="train")
# Initialize the tokenizer and load the base model
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
model = PeftModel.from_pretrained(base_model, fine_tuned_model_path)
# Set the model to evaluation mode
model.eval()
# Define a function to evaluate the model on a small portion of the dataset
def evaluate_model(dataset, tokenizer, model, sample_size=10, max_length=512, max_new_tokens=50):
# Select a small portion of the dataset
subset = dataset.select(range(min(sample_size, len(dataset))))
results = []
for example in subset:
# Tokenize the input
inputs = tokenizer(example['text'], return_tensors="pt", truncation=True, padding='max_length', max_length=max_length)
# Ensure no gradients are calculated during inference
with torch.no_grad():
# Generate responses
outputs = model.generate(
input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask'],
max_length=max_length + max_new_tokens, # Adjust max_length to allow for new tokens
max_new_tokens=max_new_tokens # Allow generating up to `max_new_tokens`
)
# Decode the output
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Append result
results.append({
'input_text': example['text'],
'generated_text': generated_text
})
return results
# Evaluate the model on a small portion of the dataset (e.g., 10 samples)
evaluation_results = evaluate_model(dataset, tokenizer, model, sample_size=10)
# Print a few results
for result in evaluation_results: # Print the results
print(f"Input Text: {result['input_text']}")
print(f"Generated Text: {result['generated_text']}")
print("-" * 50)
# Optionally, save results to a file
with open('evaluation_results.json', 'w') as f:
json.dump(evaluation_results, f, indent=4)
```
# Pushing the model to Huggingface
__hint__: I saved everything on my local machine then I pushed it into huggingface!
__hint__: You need "Your-Huggingface-ID" and "Your-Huggingface-Token"
```python
import os
from transformers import AutoModelForCausalLM, AutoTokenizer, logging
from huggingface_hub import HfApi, Repository, login
from peft import LoraConfig, PeftModel
# Define paths
base_model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf"
fine_tuned_model_path = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"
save_directory = "./fine_tuned_model" # Local directory to save the model
repo_name = "Your-Huggingface-ID/llama-2-7b-miniguanaco" # Replace with your Hugging Face username and model repo name
# Login to Hugging Face
# Step 1: Log in to Hugging Face
print("Logging in to Hugging Face...")
login(token="Your-Huggingface-Token")
# Step 2: Load the tokenizer and model
print("Loading base model and fine-tuned adapters...")
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
model = PeftModel.from_pretrained(base_model, fine_tuned_model_path)
# Step 3: Save the tokenizer and the fine-tuned model
print(f"Saving the fine-tuned model to {save_directory}...")
os.makedirs(save_directory, exist_ok=True)
tokenizer.save_pretrained(save_directory)
model.save_pretrained(save_directory)
# Step 4: Push the model to Hugging Face Hub
print(f"Pushing the model to the Hugging Face Hub: {repo_name}...")
model.push_to_hub(repo_name)
tokenizer.push_to_hub(repo_name)
print("Model pushed successfully!")
```
## Log file after pushing:
```bash
Logging in to Hugging Face...
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: fineGrained).
Your token has been saved to /home/forootan/.cache/huggingface/token
Login successful
Loading base model and fine-tuned adapters...
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:29<00:29, 29.95s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:41<00:00, 19.17s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:41<00:00, 20.79s/it]
/data/bio-eng-llm/miniconda3/envs/llava_main/lib/python3.10/site-packages/peft/utils/save_and_load.py:195: UserWarning: Could not find a config file in /data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf - will assume that the vocabulary was not modified.
warnings.warn(
Saving the fine-tuned model to ./fine_tuned_model...
Pushing the model to the Hugging Face Hub: Ali-Forootani/llama-2-7b-miniguanaco...
adapter_model.safetensors: 0%| | 0.00/134M [00:00<?, ?B/s]
adapter_model.safetensors: 12%|ββ | 16.0M/134M [00:01<00:12, 9.78MB/s]
adapter_model.safetensors: 24%|βββ | 32.0M/134M [00:03<00:09, 10.5MB/s]
adapter_model.safetensors: 36%|ββββ | 48.0M/134M [00:04<00:08, 10.5MB/s]
adapter_model.safetensors: 48%|βββββ | 64.0M/134M [00:06<00:06, 10.7MB/s]
adapter_model.safetensors: 60%|ββββββ | 80.0M/134M [00:06<00:03, 14.4MB/s]
adapter_model.safetensors: 72%|ββββββββ | 96.0M/134M [00:07<00:02, 17.3MB/s]
adapter_model.safetensors: 83%|βββββββββ | 112M/134M [00:07<00:01, 21.1MB/s]
adapter_model.safetensors: 95%|ββββββββββ| 128M/134M [00:07<00:00, 24.6MB/s]
adapter_model.safetensors: 100%|ββββββββββ| 134M/134M [00:08<00:00, 16.4MB/s]
tokenizer.model: 0%| | 0.00/500k [00:00<?, ?B/s]
tokenizer.model: 100%|ββββββββββ| 500k/500k [00:00<00:00, 1.25MB/s]
Model pushed successfully!
```
## This script is optimized to run on NVIDIA A100 GPUs. Specifically, the GPU resource used is: GPU: NVIDIA A100, 80GB
# License
This repository is licensed under the [MIT License](LICENSE).
# Contact
For questions or issues, please contact [author]([email protected]).
---
This README provides a comprehensive guide to understanding and utilizing the script for fine-tuning the LLaMA-2-7b model using advanced techniques. Adjust file paths and parameters as needed based on your specific requirements.
# Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|