File size: 19,866 Bytes
b51f50c
 
 
 
 
22684ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0738663
 
 
1e5f944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22684ef
1e5f944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22684ef
1e5f944
 
 
 
 
 
 
22684ef
1e5f944
 
22684ef
 
1e5f944
 
 
 
 
22684ef
1e5f944
 
22684ef
1e5f944
 
22684ef
 
1e5f944
 
 
 
 
22684ef
1e5f944
 
22684ef
1e5f944
 
22684ef
1e5f944
 
22684ef
 
1e5f944
 
 
 
 
22684ef
1e5f944
 
22684ef
1e5f944
 
22684ef
 
1e5f944
 
22684ef
1e5f944
 
 
 
 
22684ef
1e5f944
 
22684ef
1e5f944
 
22684ef
1e5f944
 
22684ef
1e5f944
 
22684ef
1e5f944
 
22684ef
1e5f944
 
22684ef
1e5f944
 
22684ef
1e5f944
 
22684ef
1e5f944
 
 
22684ef
1e5f944
 
22684ef
1e5f944
 
22684ef
1e5f944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22684ef
 
1e5f944
e74fea6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b68d6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e74fea6
d8f8a5c
1e5f944
 
d8f8a5c
22684ef
 
 
d8f8a5c
22684ef
d8f8a5c
22684ef
 
 
 
 
 
 
d8f8a5c
b51f50c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
---
library_name: transformers
tags: []
---



---

# Fine-Tuning LLaMA-2-7b with QLoRA on Custom Dataset

This repository provides a setup and script for fine-tuning the LLaMA-2-7b model using QLoRA (Quantized Low-Rank Adaptation) with custom datasets. The script is designed for efficiency and flexibility in training large language models (LLMs) by leveraging advanced techniques such as 4-bit quantization and LoRA.

## Overview

The script fine-tunes a pre-trained LLaMA-2-7b model using a custom dataset, applying QLoRA techniques to optimize performance. It utilizes the `transformers`, `datasets`, `peft`, and `trl` libraries for model management, data processing, and training. The setup includes support for mixed precision training, gradient checkpointing, and advanced quantization techniques to enhance the efficiency of the fine-tuning process.

## Components

### 1. Dependencies

Ensure the following libraries are installed:
- `torch`
- `datasets`
- `transformers`
- `peft`
- `trl`

Install them using pip if they are not already available:
```bash
pip install torch datasets transformers peft trl
```

### 2. Model and Dataset

- **Model**: The base model used is `LLaMA-2-7b`. The script loads this model from a specified local directory.
- **Dataset**: The training data is loaded from a specified directory. The dataset should be formatted in a way that the `"text"` field contains the training examples.

### 3. QLoRA Configuration

QLoRA parameters are used to configure the quantization and adaptation process:
- **LoRA Attention Dimension (`lora_r`)**: 64
- **LoRA Alpha Parameter (`lora_alpha`)**: 16
- **LoRA Dropout Probability (`lora_dropout`)**: 0.1

### 4. BitsAndBytes Configuration

Quantization settings for the model:
- **Use 4-bit Precision**: True
- **Compute Data Type**: `float16`
- **Quantization Type**: `nf4`
- **Nested Quantization**: False

### 5. Training Configuration

Training parameters are defined as follows:
- **Output Directory**: `./results`
- **Number of Epochs**: 300
- **Batch Size**: 4
- **Gradient Accumulation Steps**: 1
- **Learning Rate**: 2e-4
- **Weight Decay**: 0.001
- **Optimizer**: `paged_adamw_32bit`
- **Learning Rate Scheduler**: `cosine`
- **Gradient Clipping**: 0.3
- **Warmup Ratio**: 0.03
- **Logging Steps**: 25
- **Save Steps**: 0

### 6. Training and Evaluation

The script includes preprocessing of the dataset, model initialization with QLoRA, and training using `SFTTrainer` from the `trl` library. It supports mixed precision training and gradient checkpointing to enhance training efficiency.

### 7. Usage Instructions

1. **Update File Paths**: Adjust `model_name`, `dataset_name`, and `new_model` paths according to your environment.
2. **Run the Script**: Execute the script in your Python environment to start the fine-tuning process.

```bash
python fine_tune_llama.py
```

3. **Monitor Training**: Use TensorBoard or similar tools to monitor the training progress.

### 8. Model Saving

After training, the model is saved to the specified directory (`new_model`). This trained model can be loaded for further evaluation or deployment.

## Example Configuration

Here’s an example configuration used for fine-tuning:

__hint__: the base model is: NousResearch/Llama-2-7b-chat-hf
__hint__: the dataset is: mlabonne/guanaco-llama2-1k
__hint__: I saved them on my local machine then laod them! you can directly download them from huggingface

```python
model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf" # the base model is: NousResearch/Llama-2-7b-chat-hf
dataset_name = "/data/bio-eng-llm/llm_repo/mlabonne/guanaco-llama2-1k" # the dataset is: mlabonne/guanaco-llama2-1k
new_model = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"

lora_r = 64
lora_alpha = 16
lora_dropout = 0.1

use_4bit = True
bnb_4bit_compute_dtype = "float16"
bnb_4bit_quant_type = "nf4"
use_nested_quant = False

output_dir = "./results"
num_train_epochs = 300
fp16 = False
bf16 = False
per_device_train_batch_size = 4
gradient_accumulation_steps = 1
gradient_checkpointing = True
max_grad_norm = 0.3
learning_rate = 2e-4
weight_decay = 0.001
optim = "paged_adamw_32bit"
lr_scheduler_type = "cosine"
max_steps = -1
warmup_ratio = 0.03
group_by_length = True
save_steps = 0
logging_steps = 25
```



# The entire Python training module:

```python


import os
import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer



import sys
import os

cwd = os.getcwd()
# sys.path.append(cwd + '/my_directory')
sys.path.append(cwd)


def setting_directory(depth):
    current_dir = os.path.abspath(os.getcwd())
    root_dir = current_dir
    for i in range(depth):
        root_dir = os.path.abspath(os.path.join(root_dir, os.pardir))
        sys.path.append(os.path.dirname(root_dir))
    return root_dir

#################################
#S:\Llavar_repo\LLaVA\NousResearch\Llama-2-7b-chat-hf

# The model that you want to train from the Hugging Face hub



model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf"


#model_name = setting_directory(2) + "\\Llavar_repo\\LLaVA\NousResearch\\Llama-2-7b-chat-hf"



# The instruction dataset to use
dataset_name = "/data/bio-eng-llm/llm_repo/mlabonne/guanaco-llama2-1k"

# Fine-tuned model name
new_model = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"

################################################################################
# QLoRA parameters
################################################################################

# LoRA attention dimension
lora_r = 64

# Alpha parameter for LoRA scaling
lora_alpha = 16

# Dropout probability for LoRA layers
lora_dropout = 0.1

################################################################################
# bitsandbytes parameters
################################################################################

# Activate 4-bit precision base model loading
use_4bit = True

# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"

# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"

# Activate nested quantization for 4-bit base models (double quantization)
use_nested_quant = False

################################################################################
# TrainingArguments parameters
################################################################################

# Output directory where the model predictions and checkpoints will be stored
output_dir = "./results"

# Number of training epochs
num_train_epochs = 300

# Enable fp16/bf16 training (set bf16 to True with an A100)
fp16 = False
bf16 = False

# Batch size per GPU for training
per_device_train_batch_size = 4

# Batch size per GPU for evaluation
per_device_eval_batch_size = 4

# Number of update steps to accumulate the gradients for
gradient_accumulation_steps = 1

# Enable gradient checkpointing
gradient_checkpointing = True

# Maximum gradient normal (gradient clipping)
max_grad_norm = 0.3

# Initial learning rate (AdamW optimizer)
learning_rate = 2e-4

# Weight decay to apply to all layers except bias/LayerNorm weights
weight_decay = 0.001

# Optimizer to use
optim = "paged_adamw_32bit"

# Learning rate schedule
lr_scheduler_type = "cosine"

# Number of training steps (overrides num_train_epochs)
max_steps = -1

# Ratio of steps for a linear warmup (from 0 to learning rate)
warmup_ratio = 0.03

# Group sequences into batches with same length
# Saves memory and speeds up training considerably
group_by_length = True

# Save checkpoint every X updates steps
save_steps = 0

# Log every X updates steps
logging_steps = 25

################################################################################
# SFT parameters
################################################################################

# Maximum sequence length to use
max_seq_length = None

# Pack multiple short examples in the same input sequence to increase efficiency
packing = False

# Load the entire model on the GPU 0
device_map = {"": 0}



################################################################################


# Load dataset (you can process it here)
dataset = load_dataset(dataset_name, split="train")

print(dataset[0].keys())  # This will print all the field names in your dataset

# Load tokenizer and model with QLoRA configuration
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=use_4bit,
    bnb_4bit_quant_type=bnb_4bit_quant_type,
    bnb_4bit_compute_dtype=compute_dtype,
    bnb_4bit_use_double_quant=use_nested_quant,
)

# Check GPU compatibility with bfloat16
if compute_dtype == torch.float16 and use_4bit:
    major, _ = torch.cuda.get_device_capability()
    if major >= 8:
        print("=" * 80)
        print("Your GPU supports bfloat16: accelerate training with bf16=True")
        print("=" * 80)

# Load base model
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map=device_map
)
model.config.use_cache = False
model.config.pretraining_tp = 1

# Load LLaMA tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training

# Load LoRA configuration
peft_config = LoraConfig(
    lora_alpha=lora_alpha,
    lora_dropout=lora_dropout,
    r=lora_r,
    bias="none",
    task_type="CAUSAL_LM",
)

# Set training parameters
training_arguments = TrainingArguments(
    output_dir=output_dir,
    num_train_epochs=num_train_epochs,
    per_device_train_batch_size=per_device_train_batch_size,
    gradient_accumulation_steps=gradient_accumulation_steps,
    optim=optim,
    save_steps=save_steps,
    logging_steps=logging_steps,
    learning_rate=learning_rate,
    weight_decay=weight_decay,
    fp16=fp16,
    bf16=bf16,
    max_grad_norm=max_grad_norm,
    max_steps=max_steps,
    warmup_ratio=warmup_ratio,
    group_by_length=group_by_length,
    lr_scheduler_type=lr_scheduler_type,
    report_to="tensorboard"
)

# Set supervised fine-tuning parameters

def preprocess_function(examples):
    return tokenizer(examples["text"], truncation=True, max_length=512)

tokenized_dataset = dataset.map(preprocess_function, batched=True)

trainer = SFTTrainer(
    model=model,
    train_dataset=tokenized_dataset,
    peft_config=peft_config,
    tokenizer=tokenizer,
    args=training_arguments,
    packing=packing,
)

# Train model
trainer.train()

# Save trained model
trainer.model.save_pretrained(new_model)
```


# Testing the fine tuned model on the dataset


```python

import os
import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer


import sys
import os


base_model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf"  # The base model you fine-tuned


cwd = os.getcwd()
# sys.path.append(cwd + '/my_directory')
sys.path.append(cwd)


def setting_directory(depth):
    current_dir = os.path.abspath(os.getcwd())
    root_dir = current_dir
    for i in range(depth):
        root_dir = os.path.abspath(os.path.join(root_dir, os.pardir))
        sys.path.append(os.path.dirname(root_dir))
    return root_dir


# The instruction dataset to use
dataset_name = "/data/bio-eng-llm/llm_repo/mlabonne/guanaco-llama2-1k"

# Fine-tuned model name
new_model = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"


############################
############################  Loading the fine tunned model

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

# Base model path (you've trained this model using PEFT)
base_model_name = "NousResearch/Llama-2-7b-chat-hf"

# Load the base model and tokenizer
model = AutoModelForCausalLM.from_pretrained(base_model_name)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)

# Path to the directory containing adapter_config.json and adapter_model.safetensors
fine_tuned_model_path = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"

# Load the fine-tuned model (PEFT adapter)
model = PeftModel.from_pretrained(model, fine_tuned_model_path)


print(model)


####################################################
####################################################
####################################################
import os
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import json

# Define paths
base_model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf"
fine_tuned_model_path = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"
dataset_name = "/data/bio-eng-llm/llm_repo/mlabonne/guanaco-llama2-1k"

# Load the dataset
dataset = load_dataset(dataset_name, split="train")

# Initialize the tokenizer and load the base model
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
model = PeftModel.from_pretrained(base_model, fine_tuned_model_path)

# Set the model to evaluation mode
model.eval()

# Define a function to evaluate the model on a small portion of the dataset
def evaluate_model(dataset, tokenizer, model, sample_size=10, max_length=512, max_new_tokens=50):
    # Select a small portion of the dataset
    subset = dataset.select(range(min(sample_size, len(dataset))))
    
    results = []
    for example in subset:
        # Tokenize the input
        inputs = tokenizer(example['text'], return_tensors="pt", truncation=True, padding='max_length', max_length=max_length)
        
        # Ensure no gradients are calculated during inference
        with torch.no_grad():
            # Generate responses
            outputs = model.generate(
                input_ids=inputs['input_ids'],
                attention_mask=inputs['attention_mask'],
                max_length=max_length + max_new_tokens,  # Adjust max_length to allow for new tokens
                max_new_tokens=max_new_tokens  # Allow generating up to `max_new_tokens`
            )
        
        # Decode the output
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Append result
        results.append({
            'input_text': example['text'],
            'generated_text': generated_text
        })
    
    return results

# Evaluate the model on a small portion of the dataset (e.g., 10 samples)
evaluation_results = evaluate_model(dataset, tokenizer, model, sample_size=10)

# Print a few results
for result in evaluation_results:  # Print the results
    print(f"Input Text: {result['input_text']}")
    print(f"Generated Text: {result['generated_text']}")
    print("-" * 50)

# Optionally, save results to a file
with open('evaluation_results.json', 'w') as f:
    json.dump(evaluation_results, f, indent=4)

```


# Pushing the model to Huggingface

__hint__: I saved everything on my local machine then I pushed it into huggingface!
__hint__: You need "Your-Huggingface-ID" and "Your-Huggingface-Token"

```python

import os
from transformers import AutoModelForCausalLM, AutoTokenizer, logging
from huggingface_hub import HfApi, Repository, login

from peft import LoraConfig, PeftModel


# Define paths
base_model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf"
fine_tuned_model_path = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"
save_directory = "./fine_tuned_model"  # Local directory to save the model
repo_name = "Your-Huggingface-ID/llama-2-7b-miniguanaco"  # Replace with your Hugging Face username and model repo name


# Login to Hugging Face


# Step 1: Log in to Hugging Face
print("Logging in to Hugging Face...")
login(token="Your-Huggingface-Token")

# Step 2: Load the tokenizer and model
print("Loading base model and fine-tuned adapters...")
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
model = PeftModel.from_pretrained(base_model, fine_tuned_model_path)

# Step 3: Save the tokenizer and the fine-tuned model
print(f"Saving the fine-tuned model to {save_directory}...")
os.makedirs(save_directory, exist_ok=True)
tokenizer.save_pretrained(save_directory)
model.save_pretrained(save_directory)

# Step 4: Push the model to Hugging Face Hub
print(f"Pushing the model to the Hugging Face Hub: {repo_name}...")
model.push_to_hub(repo_name)
tokenizer.push_to_hub(repo_name)

print("Model pushed successfully!")
```

## Log file after pushing:

```bash
Logging in to Hugging Face...
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: fineGrained).
Your token has been saved to /home/forootan/.cache/huggingface/token
Login successful
Loading base model and fine-tuned adapters...

Loading checkpoint shards:   0%|          | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards:  50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 1/2 [00:29<00:29, 29.95s/it]
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:41<00:00, 19.17s/it]
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:41<00:00, 20.79s/it]
/data/bio-eng-llm/miniconda3/envs/llava_main/lib/python3.10/site-packages/peft/utils/save_and_load.py:195: UserWarning: Could not find a config file in /data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf - will assume that the vocabulary was not modified.
  warnings.warn(
Saving the fine-tuned model to ./fine_tuned_model...
Pushing the model to the Hugging Face Hub: Ali-Forootani/llama-2-7b-miniguanaco...

adapter_model.safetensors:   0%|          | 0.00/134M [00:00<?, ?B/s]
adapter_model.safetensors:  12%|β–ˆβ–        | 16.0M/134M [00:01<00:12, 9.78MB/s]
adapter_model.safetensors:  24%|β–ˆβ–ˆβ–       | 32.0M/134M [00:03<00:09, 10.5MB/s]
adapter_model.safetensors:  36%|β–ˆβ–ˆβ–ˆβ–Œ      | 48.0M/134M [00:04<00:08, 10.5MB/s]
adapter_model.safetensors:  48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 64.0M/134M [00:06<00:06, 10.7MB/s]
adapter_model.safetensors:  60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 80.0M/134M [00:06<00:03, 14.4MB/s]
adapter_model.safetensors:  72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 96.0M/134M [00:07<00:02, 17.3MB/s]
adapter_model.safetensors:  83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 112M/134M [00:07<00:01, 21.1MB/s] 
adapter_model.safetensors:  95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 128M/134M [00:07<00:00, 24.6MB/s]
adapter_model.safetensors: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 134M/134M [00:08<00:00, 16.4MB/s]

tokenizer.model:   0%|          | 0.00/500k [00:00<?, ?B/s]
tokenizer.model: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 500k/500k [00:00<00:00, 1.25MB/s]
Model pushed successfully!
```


## This script is optimized to run on NVIDIA A100 GPUs. Specifically, the GPU resource used is: GPU: NVIDIA A100, 80GB


# License

This repository is licensed under the [MIT License](LICENSE).

# Contact

For questions or issues, please contact [author]([email protected]).

---

This README provides a comprehensive guide to understanding and utilizing the script for fine-tuning the LLaMA-2-7b model using advanced techniques. Adjust file paths and parameters as needed based on your specific requirements.



# Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->