Alex-VisTas commited on
Commit
c1afe63
·
1 Parent(s): 57bd6df

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -7
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.8228346456692913
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.4607
35
- - Accuracy: 0.8228
36
 
37
  ## Model description
38
 
@@ -60,15 +60,18 @@ The following hyperparameters were used during training:
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 3
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | 0.5176 | 1.0 | 18 | 0.4607 | 0.8228 |
70
- | 0.4291 | 2.0 | 36 | 0.4497 | 0.8228 |
71
- | 0.4051 | 3.0 | 54 | 0.4248 | 0.8228 |
 
 
 
72
 
73
 
74
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.8346456692913385
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.3757
35
+ - Accuracy: 0.8346
36
 
37
  ## Model description
38
 
 
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 6
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.6766 | 1.0 | 18 | 0.4542 | 0.8425 |
70
+ | 0.4078 | 2.0 | 36 | 0.3918 | 0.8425 |
71
+ | 0.4251 | 3.0 | 54 | 0.3993 | 0.8425 |
72
+ | 0.3648 | 4.0 | 72 | 0.3716 | 0.8386 |
73
+ | 0.3474 | 5.0 | 90 | 0.3802 | 0.8346 |
74
+ | 0.367 | 6.0 | 108 | 0.3757 | 0.8346 |
75
 
76
 
77
  ### Framework versions