--- license: other tags: - generated_from_trainer datasets: - AlekseyKorshuk/dalio-all-io metrics: - accuracy model-index: - name: dalio-all-io-125m-3-epoch results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/dalio-all-io type: AlekseyKorshuk/dalio-all-io metrics: - name: Accuracy type: accuracy value: 0.049654305468258955 --- # dalio-all-io-125m-3-epoch This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co./facebook/opt-125m) on the AlekseyKorshuk/dalio-all-io dataset. It achieves the following results on the evaluation set: - Loss: 2.7656 - Accuracy: 0.0497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.1406 | 0.03 | 1 | 3.0762 | 0.0451 | | 3.074 | 0.07 | 2 | 3.0762 | 0.0451 | | 3.0557 | 0.1 | 3 | 3.0762 | 0.0451 | | 3.2166 | 0.14 | 4 | 3.0176 | 0.0457 | | 3.0989 | 0.17 | 5 | 2.9922 | 0.0460 | | 3.0732 | 0.21 | 6 | 2.9746 | 0.0464 | | 3.0867 | 0.24 | 7 | 2.9629 | 0.0463 | | 2.979 | 0.28 | 8 | 2.9512 | 0.0467 | | 3.1838 | 0.31 | 9 | 2.9414 | 0.0467 | | 2.9399 | 0.34 | 10 | 2.9336 | 0.0467 | | 2.926 | 0.38 | 11 | 2.9258 | 0.0471 | | 3.2144 | 0.41 | 12 | 2.9199 | 0.0473 | | 2.978 | 0.45 | 13 | 2.9141 | 0.0474 | | 3.0076 | 0.48 | 14 | 2.9082 | 0.0476 | | 2.9897 | 0.52 | 15 | 2.9023 | 0.0477 | | 2.8831 | 0.55 | 16 | 2.8945 | 0.0479 | | 2.9749 | 0.59 | 17 | 2.8867 | 0.0479 | | 2.9431 | 0.62 | 18 | 2.8828 | 0.0478 | | 3.0498 | 0.66 | 19 | 2.8770 | 0.0479 | | 2.9409 | 0.69 | 20 | 2.8711 | 0.0479 | | 2.96 | 0.72 | 21 | 2.8672 | 0.0480 | | 3.0767 | 0.76 | 22 | 2.8633 | 0.0478 | | 2.772 | 0.79 | 23 | 2.8594 | 0.0479 | | 3.0574 | 0.83 | 24 | 2.8535 | 0.0480 | | 2.8137 | 0.86 | 25 | 2.8496 | 0.0480 | | 2.8872 | 0.9 | 26 | 2.8438 | 0.0483 | | 3.0085 | 0.93 | 27 | 2.8398 | 0.0484 | | 2.9165 | 0.97 | 28 | 2.8359 | 0.0485 | | 2.8525 | 1.0 | 29 | 2.8340 | 0.0486 | | 2.7759 | 1.03 | 30 | 2.8301 | 0.0485 | | 2.7312 | 1.07 | 31 | 2.8281 | 0.0485 | | 2.6641 | 1.1 | 32 | 2.8262 | 0.0487 | | 2.7896 | 1.14 | 33 | 2.8242 | 0.0486 | | 2.7878 | 1.17 | 34 | 2.8223 | 0.0487 | | 2.4028 | 1.21 | 35 | 2.8203 | 0.0487 | | 2.5618 | 1.24 | 36 | 2.8184 | 0.0488 | | 2.6697 | 1.28 | 37 | 2.8164 | 0.0488 | | 2.6333 | 1.31 | 38 | 2.8145 | 0.0487 | | 2.4897 | 1.34 | 39 | 2.8125 | 0.0486 | | 2.4908 | 1.38 | 40 | 2.8105 | 0.0487 | | 2.6926 | 1.41 | 41 | 2.8086 | 0.0488 | | 2.6602 | 1.45 | 42 | 2.8066 | 0.0489 | | 2.8054 | 1.48 | 43 | 2.8047 | 0.0489 | | 2.5532 | 1.52 | 44 | 2.8047 | 0.0490 | | 2.4756 | 1.55 | 45 | 2.8027 | 0.0491 | | 2.6123 | 1.59 | 46 | 2.8008 | 0.0491 | | 2.5117 | 1.62 | 47 | 2.7988 | 0.0490 | | 2.5552 | 1.66 | 48 | 2.7969 | 0.0490 | | 2.5122 | 1.69 | 49 | 2.7949 | 0.0490 | | 2.5593 | 1.72 | 50 | 2.7930 | 0.0491 | | 2.5759 | 1.76 | 51 | 2.7910 | 0.0491 | | 2.5535 | 1.79 | 52 | 2.7891 | 0.0493 | | 2.6531 | 1.83 | 53 | 2.7871 | 0.0494 | | 2.5701 | 1.86 | 54 | 2.7852 | 0.0495 | | 2.6621 | 1.9 | 55 | 2.7832 | 0.0497 | | 2.532 | 1.93 | 56 | 2.7812 | 0.0496 | | 2.5928 | 1.97 | 57 | 2.7793 | 0.0497 | | 2.5486 | 2.0 | 58 | 2.7754 | 0.0497 | | 2.5009 | 2.03 | 59 | 2.7734 | 0.0497 | | 2.4346 | 2.07 | 60 | 2.7734 | 0.0498 | | 2.3259 | 2.1 | 61 | 2.7715 | 0.0497 | | 2.3569 | 2.14 | 62 | 2.7695 | 0.0498 | | 2.5898 | 2.17 | 63 | 2.7695 | 0.0498 | | 2.3657 | 2.21 | 64 | 2.7676 | 0.0498 | | 2.4875 | 2.24 | 65 | 2.7676 | 0.0498 | | 2.4392 | 2.28 | 66 | 2.7676 | 0.0497 | | 2.3595 | 2.31 | 67 | 2.7656 | 0.0497 | | 2.4757 | 2.34 | 68 | 2.7656 | 0.0498 | | 2.4617 | 2.38 | 69 | 2.7656 | 0.0498 | | 2.3376 | 2.41 | 70 | 2.7656 | 0.0499 | | 2.3129 | 2.45 | 71 | 2.7656 | 0.0498 | | 2.5703 | 2.48 | 72 | 2.7656 | 0.0498 | | 2.3491 | 2.52 | 73 | 2.7656 | 0.0498 | | 2.3484 | 2.55 | 74 | 2.7656 | 0.0498 | | 2.3782 | 2.59 | 75 | 2.7656 | 0.0497 | | 2.4033 | 2.62 | 76 | 2.7656 | 0.0498 | | 2.3821 | 2.66 | 77 | 2.7656 | 0.0498 | | 2.39 | 2.69 | 78 | 2.7656 | 0.0498 | | 2.3984 | 2.72 | 79 | 2.7656 | 0.0497 | | 2.3936 | 2.76 | 80 | 2.7656 | 0.0498 | | 2.4414 | 2.79 | 81 | 2.7656 | 0.0497 | | 2.4727 | 2.83 | 82 | 2.7656 | 0.0497 | | 2.3192 | 2.86 | 83 | 2.7656 | 0.0497 | | 2.4365 | 2.9 | 84 | 2.7656 | 0.0497 | | 2.5042 | 2.93 | 85 | 2.7656 | 0.0497 | | 2.4746 | 2.97 | 86 | 2.7656 | 0.0497 | | 2.5383 | 3.0 | 87 | 2.7656 | 0.0497 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1