AlekseyKorshuk commited on
Commit
a8495a8
·
1 Parent(s): 14a6c64

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: dalio-all-io-1.3b
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # dalio-all-io-1.3b
16
+
17
+ This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.3652
20
+ - Accuracy: 0.0558
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 3e-05
40
+ - train_batch_size: 2
41
+ - eval_batch_size: 2
42
+ - seed: 42
43
+ - distributed_type: multi-GPU
44
+ - num_devices: 8
45
+ - total_train_batch_size: 16
46
+ - total_eval_batch_size: 16
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: cosine
49
+ - num_epochs: 1.0
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 2.6543 | 0.03 | 1 | 2.6113 | 0.0513 |
56
+ | 2.6077 | 0.07 | 2 | 2.6113 | 0.0513 |
57
+ | 2.5964 | 0.1 | 3 | 2.5605 | 0.0519 |
58
+ | 2.7302 | 0.14 | 4 | 2.5234 | 0.0527 |
59
+ | 2.7 | 0.17 | 5 | 2.5078 | 0.0528 |
60
+ | 2.5674 | 0.21 | 6 | 2.4941 | 0.0532 |
61
+ | 2.6406 | 0.24 | 7 | 2.4883 | 0.0534 |
62
+ | 2.5315 | 0.28 | 8 | 2.4805 | 0.0536 |
63
+ | 2.7202 | 0.31 | 9 | 2.4727 | 0.0537 |
64
+ | 2.5144 | 0.34 | 10 | 2.4648 | 0.0536 |
65
+ | 2.4983 | 0.38 | 11 | 2.4512 | 0.0537 |
66
+ | 2.7029 | 0.41 | 12 | 2.4414 | 0.0539 |
67
+ | 2.5198 | 0.45 | 13 | 2.4336 | 0.0540 |
68
+ | 2.5706 | 0.48 | 14 | 2.4258 | 0.0545 |
69
+ | 2.5688 | 0.52 | 15 | 2.4180 | 0.0548 |
70
+ | 2.3793 | 0.55 | 16 | 2.4102 | 0.0552 |
71
+ | 2.4785 | 0.59 | 17 | 2.4043 | 0.0554 |
72
+ | 2.4688 | 0.62 | 18 | 2.3984 | 0.0553 |
73
+ | 2.5674 | 0.66 | 19 | 2.3984 | 0.0553 |
74
+ | 2.5054 | 0.69 | 20 | 2.3945 | 0.0554 |
75
+ | 2.452 | 0.72 | 21 | 2.3887 | 0.0555 |
76
+ | 2.5999 | 0.76 | 22 | 2.3828 | 0.0556 |
77
+ | 2.3665 | 0.79 | 23 | 2.3789 | 0.0556 |
78
+ | 2.6223 | 0.83 | 24 | 2.375 | 0.0557 |
79
+ | 2.3562 | 0.86 | 25 | 2.3711 | 0.0557 |
80
+ | 2.429 | 0.9 | 26 | 2.3691 | 0.0557 |
81
+ | 2.563 | 0.93 | 27 | 2.3672 | 0.0558 |
82
+ | 2.4573 | 0.97 | 28 | 2.3652 | 0.0558 |
83
+ | 2.4883 | 1.0 | 29 | 2.3652 | 0.0558 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.25.0.dev0
89
+ - Pytorch 1.12.1+cu113
90
+ - Datasets 2.3.2
91
+ - Tokenizers 0.12.1