--- license: other tags: - generated_from_trainer datasets: - AlekseyKorshuk/dalio-all-io metrics: - accuracy model-index: - name: dalio-all-io-1.3b-2-epoch results: - task: name: Causal Language Modeling type: text-generation dataset: name: AlekseyKorshuk/dalio-all-io type: AlekseyKorshuk/dalio-all-io metrics: - name: Accuracy type: accuracy value: 0.057553854065481976 --- # dalio-all-io-1.3b-2-epoch This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co./facebook/opt-1.3b) on the AlekseyKorshuk/dalio-all-io dataset. It achieves the following results on the evaluation set: - Loss: 2.2949 - Accuracy: 0.0576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6543 | 0.03 | 1 | 2.6113 | 0.0513 | | 2.6077 | 0.07 | 2 | 2.6113 | 0.0513 | | 2.5964 | 0.1 | 3 | 2.5605 | 0.0519 | | 2.7302 | 0.14 | 4 | 2.5234 | 0.0527 | | 2.7002 | 0.17 | 5 | 2.5078 | 0.0529 | | 2.5674 | 0.21 | 6 | 2.4941 | 0.0533 | | 2.6399 | 0.24 | 7 | 2.4883 | 0.0534 | | 2.533 | 0.28 | 8 | 2.4805 | 0.0536 | | 2.7202 | 0.31 | 9 | 2.4746 | 0.0536 | | 2.5137 | 0.34 | 10 | 2.4648 | 0.0534 | | 2.499 | 0.38 | 11 | 2.4512 | 0.0536 | | 2.7026 | 0.41 | 12 | 2.4414 | 0.0539 | | 2.5254 | 0.45 | 13 | 2.4336 | 0.0543 | | 2.5667 | 0.48 | 14 | 2.4238 | 0.0545 | | 2.5715 | 0.52 | 15 | 2.4160 | 0.0548 | | 2.3739 | 0.55 | 16 | 2.4102 | 0.0550 | | 2.4756 | 0.59 | 17 | 2.4043 | 0.0549 | | 2.4783 | 0.62 | 18 | 2.3984 | 0.0550 | | 2.5665 | 0.66 | 19 | 2.3906 | 0.0549 | | 2.4888 | 0.69 | 20 | 2.3906 | 0.0549 | | 2.4476 | 0.72 | 21 | 2.3828 | 0.0550 | | 2.604 | 0.76 | 22 | 2.375 | 0.0552 | | 2.3416 | 0.79 | 23 | 2.3652 | 0.0554 | | 2.6028 | 0.83 | 24 | 2.3555 | 0.0555 | | 2.3425 | 0.86 | 25 | 2.3477 | 0.0558 | | 2.4142 | 0.9 | 26 | 2.3398 | 0.0558 | | 2.5317 | 0.93 | 27 | 2.3340 | 0.0559 | | 2.4119 | 0.97 | 28 | 2.3301 | 0.0561 | | 2.4048 | 1.0 | 29 | 2.3262 | 0.0563 | | 1.9646 | 1.03 | 30 | 2.3242 | 0.0564 | | 1.9233 | 1.07 | 31 | 2.3203 | 0.0563 | | 1.9276 | 1.1 | 32 | 2.3203 | 0.0564 | | 1.8702 | 1.14 | 33 | 2.3281 | 0.0565 | | 2.0997 | 1.17 | 34 | 2.3340 | 0.0565 | | 1.7943 | 1.21 | 35 | 2.3320 | 0.0568 | | 1.8579 | 1.24 | 36 | 2.3242 | 0.0567 | | 1.8844 | 1.28 | 37 | 2.3145 | 0.0568 | | 1.9288 | 1.31 | 38 | 2.3086 | 0.0569 | | 1.6616 | 1.34 | 39 | 2.3047 | 0.0570 | | 1.6443 | 1.38 | 40 | 2.3047 | 0.0571 | | 1.7616 | 1.41 | 41 | 2.3027 | 0.0572 | | 1.7904 | 1.45 | 42 | 2.3027 | 0.0571 | | 1.8762 | 1.48 | 43 | 2.3027 | 0.0573 | | 1.6569 | 1.52 | 44 | 2.3027 | 0.0573 | | 1.647 | 1.55 | 45 | 2.3027 | 0.0573 | | 1.8168 | 1.59 | 46 | 2.3027 | 0.0574 | | 1.7194 | 1.62 | 47 | 2.3027 | 0.0573 | | 1.7667 | 1.66 | 48 | 2.3027 | 0.0572 | | 1.7621 | 1.69 | 49 | 2.3027 | 0.0573 | | 1.7269 | 1.72 | 50 | 2.3008 | 0.0573 | | 1.7815 | 1.76 | 51 | 2.3008 | 0.0574 | | 1.8318 | 1.79 | 52 | 2.2988 | 0.0574 | | 1.9366 | 1.83 | 53 | 2.2988 | 0.0575 | | 1.736 | 1.86 | 54 | 2.2969 | 0.0576 | | 1.9984 | 1.9 | 55 | 2.2969 | 0.0575 | | 1.7203 | 1.93 | 56 | 2.2949 | 0.0575 | | 1.7391 | 1.97 | 57 | 2.2949 | 0.0576 | | 1.6611 | 2.0 | 58 | 2.2949 | 0.0576 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1