File size: 3,854 Bytes
fac7d7c a20de9b fac7d7c a20de9b fac7d7c a20de9b fac7d7c a20de9b fac7d7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
license: other
tags:
- generated_from_trainer
datasets:
- AlekseyKorshuk/amazon-reviews-input-output
metrics:
- accuracy
model-index:
- name: amazon-reviews-input-output-6.7b
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: AlekseyKorshuk/amazon-reviews-input-output
type: AlekseyKorshuk/amazon-reviews-input-output
metrics:
- name: Accuracy
type: accuracy
value: 0.03882113821138211
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# amazon-reviews-input-output-6.7b
This model is a fine-tuned version of [facebook/opt-6.7b](https://huggingface.co./facebook/opt-6.7b) on the AlekseyKorshuk/amazon-reviews-input-output dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8574
- Accuracy: 0.0388
- Samples: 100
- Perplexity: 17.4166
- Table: <wandb.data_types.Table object at 0x7fd30eb4e940>
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.9912 | 0.06 | 1 | 2.7441 | 0.0404 |
| 2.9329 | 0.12 | 2 | 2.7441 | 0.0404 |
| 2.9138 | 0.19 | 3 | 2.8262 | 0.0389 |
| 2.9395 | 0.25 | 4 | 2.8262 | 0.0389 |
| 2.9109 | 0.31 | 5 | 2.7949 | 0.0399 |
| 2.8394 | 0.38 | 6 | 2.7461 | 0.0403 |
| 2.9365 | 0.44 | 7 | 2.7207 | 0.0399 |
| 2.7588 | 0.5 | 8 | 2.7070 | 0.0403 |
| 2.9751 | 0.56 | 9 | 2.6816 | 0.0407 |
| 2.844 | 0.62 | 10 | 2.6738 | 0.0404 |
| 2.731 | 0.69 | 11 | 2.6680 | 0.0406 |
| 2.7434 | 0.75 | 12 | 2.6699 | 0.0404 |
| 2.9043 | 0.81 | 13 | 2.6855 | 0.0400 |
| 2.8564 | 0.88 | 14 | 2.6855 | 0.0400 |
| 2.8716 | 0.94 | 15 | 2.6855 | 0.0400 |
| 2.896 | 1.0 | 16 | 2.6953 | 0.0398 |
| 1.9858 | 1.06 | 17 | 2.7070 | 0.0400 |
| 2.0563 | 1.12 | 18 | 2.7285 | 0.0400 |
| 2.04 | 1.19 | 19 | 2.7676 | 0.0398 |
| 1.9885 | 1.25 | 20 | 2.7910 | 0.0396 |
| 2.09 | 1.31 | 21 | 2.7969 | 0.0393 |
| 2.059 | 1.38 | 22 | 2.8105 | 0.0395 |
| 2.0498 | 1.44 | 23 | 2.7930 | 0.0398 |
| 1.9568 | 1.5 | 24 | 2.7910 | 0.0401 |
| 2.1418 | 1.56 | 25 | 2.7930 | 0.0398 |
| 1.975 | 1.62 | 26 | 2.7930 | 0.0397 |
| 1.996 | 1.69 | 27 | 2.7949 | 0.0393 |
| 1.9617 | 1.75 | 28 | 2.8047 | 0.0392 |
| 2.2062 | 1.81 | 29 | 2.8145 | 0.0388 |
| 1.9929 | 1.88 | 30 | 2.8145 | 0.0386 |
| 1.9235 | 1.94 | 31 | 2.8281 | 0.0390 |
| 1.9127 | 2.0 | 32 | 2.8574 | 0.0388 |
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|