Robotic1 / config.json
AlbertoImmune's picture
Upload PPO LunarLander-v2 trained agent
4846145 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb13f69d870>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb13f69d900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb13f69d990>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb13f69da20>", "_build": "<function ActorCriticPolicy._build at 0x7bb13f69dab0>", "forward": "<function ActorCriticPolicy.forward at 0x7bb13f69db40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb13f69dbd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb13f69dc60>", "_predict": "<function ActorCriticPolicy._predict at 0x7bb13f69dcf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb13f69dd80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb13f69de10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb13f69dea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb0e1fad480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1734837211338922917, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1ysryu9YS6yFHRO8SxaDY+GYY6wCRYNQAAAAAAAIA/gLPevTiE0T1R3D0+LwyZvtHuMD24zwA9AAAAAAAAAAAAl029vf8wPJu81j2VsJq+xdSQvPq1rbwAAAAAAAAAAM24oj2PQkO6ljymu6UA7TbgVyK7UqdVtgAAAAAAAAAAmjECO6SUbbvOgHE7G0xgPOfjvrzTIEM9AACAPwAAgD9NbU099hxHulK/abQU4hkwJZ6IuvCKoTMAAIA/AACAP3r4R76hT7q8sHHnOqXEuDluaCY+Rno4ugAAgD8AAIA/LTA9vjb6C7wO+oS7rDWuuYxecT3dwUw6AACAPwAAgD927Hy+u/uDP9IcMr41TQm/vRaRvt7wjT0AAAAAAAAAAM0Qlrz2jHC6e2KmO+43ETay1iK5lm0RNQAAAAAAAIA/OjZBPtsVsrwj9WQ8ZPsnPJLOH769vmE9AAAAAAAAAADd4IO+q98rP05J8j0/DMy+ufbWvacyyjwAAAAAAAAAAADPKD2c7jk9MNravWbTmr6H2fC8zZf7OwAAAAAAAAAAJpOHvXjarDzDYQ09gnqGvojChLwmPI29AAAAAAAAAAAAysA95fxxP3rp6T0seAe/YYgZPsbAfb0AAAAAAAAAAEDi6b1Y18Q94vEWPldPmL4z1bc8Aj1PPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKjjundfsyMAWyUS8+MAXSUR0CXGQB+WnjydX2UKGgGR0BxAWZG8VYZaAdLvmgIR0CXGQu27Wd3dX2UKGgGR0BxunAgxJumaAdL8mgIR0CXGdirT6SDdX2UKGgGR0BvqBkTYdyUaAdL2WgIR0CXGl655JK8dX2UKGgGR0BwM0VnEl3RaAdL02gIR0CXG4mICU5ddX2UKGgGR0BxWRJAdGRWaAdLwmgIR0CXG+EdNnGsdX2UKGgGR0BwqSofjjrBaAdLzGgIR0CXHELjPv8ZdX2UKGgGR0ByhGGRFI/aaAdL8GgIR0CXHEbYbsF/dX2UKGgGR0BxxSwu/UONaAdLy2gIR0CXHGlk6LfldX2UKGgGR0BwCPHKfWc0aAdL3GgIR0CXHS3Y+Sr6dX2UKGgGR0ByMfHCGetkaAdLxGgIR0CXHnk30f5ldX2UKGgGR0BwG8aya/h3aAdL12gIR0CXKRerdWQwdX2UKGgGR0BynjYukDZEaAdNJwFoCEdAlylkjTrmhnV9lChoBkdAblFTDO1OTWgHS85oCEdAlynlg6U7jnV9lChoBkdAcYSycCo0h2gHS9NoCEdAlyoQKKHfuXV9lChoBkdAcUrg/TspomgHS8xoCEdAlypli4J/onV9lChoBkdAcru8OTaCc2gHS95oCEdAlysxvvSc9XV9lChoBkdAciV9Mbm2cGgHS9hoCEdAlyvKsMiKSHV9lChoBkdAbrCTHsC1Z2gHS85oCEdAlyv7+cYqG3V9lChoBkdAccJy2hIvrWgHS+JoCEdAlyxJT6zmfXV9lChoBkdAclvVh1DBuWgHS+JoCEdAlyyGGEf1YnV9lChoBkdAcS9LDye7MGgHS9JoCEdAlyy+ruIAO3V9lChoBkdAcL6lzltCRmgHS+doCEdAlyy9LteD4HV9lChoBkdAcEpI9TxXn2gHS8toCEdAly3JAY51eXV9lChoBkdAcWZmknCwbGgHS8loCEdAly5qsySFG3V9lChoBkdAbygXQdCE6GgHS99oCEdAly9LaEi+tnV9lChoBkdAchMSpBHCoGgHS9xoCEdAly+6kEcKgXV9lChoBkdAchpYUnG83GgHS9poCEdAly/WgzxgA3V9lChoBkdAcQdnF5v9+GgHS+doCEdAlzCKn752yXV9lChoBkdActqYZl4C62gHS9poCEdAlzEP4EfT1HV9lChoBkdAcXY8AJb+tWgHS8xoCEdAlzFNHQQcxXV9lChoBkdAcYZj9n9NvmgHS9JoCEdAlzH4jrzGxXV9lChoBkdAcZqxgRbr1WgHS9FoCEdAlzJwu7HyVnV9lChoBkdAcs9ob4rSVmgHS9poCEdAlzJ5djXnQ3V9lChoBkdAcbH6Tnq3VmgHS+9oCEdAlzKCGrS3LHV9lChoBkdAcU8GMXJo02gHS+doCEdAlzMO4oZydXV9lChoBkdAb3qzOX3QD2gHS9VoCEdAlzOwZKnNxHV9lChoBkdAZ4lYaHbh32gHTegDaAhHQJcz//m1YyR1fZQoaAZHQHJpSJsO5J9oB0vmaAhHQJc0zVqesgd1fZQoaAZHQHB1EfgaWHFoB0vCaAhHQJc1Q5n13+x1fZQoaAZHQHLNLSy+pOxoB0vZaAhHQJc1yMvRJEp1fZQoaAZHQHIxokZ75VRoB0vsaAhHQJc14VLzwtt1fZQoaAZHQGRfXTNMXadoB03oA2gIR0CXNlOTq0MPdX2UKGgGR0Bm2LELpiZwaAdN6ANoCEdAlzaDkELYw3V9lChoBkdAcy1+SKWLP2gHS9loCEdAlzaNP557gXV9lChoBkdAcIXCOWBz3mgHS8NoCEdAlzaiU5dWyXV9lChoBkdAcMZOOsDGLmgHS8xoCEdAlzamVu76HnV9lChoBkdAczZ/N7jT8mgHS8hoCEdAl0EDAN5MUXV9lChoBkdAcTo3vQWvbGgHS8RoCEdAl0FCZjQRgHV9lChoBkdAbtMCkGiYcGgHS9poCEdAl0HUn1Fpf3V9lChoBkdAcZjS0BwMpmgHS+FoCEdAl0H11KXfInV9lChoBkdAcDAWjoIOY2gHS8toCEdAl0LBwl0HQnV9lChoBkdAcnp3b212JWgHS+JoCEdAl0MKmGdqcnV9lChoBkdAcHr5AhStNmgHS89oCEdAl0QAMx46fnV9lChoBkdAcWxn1FpfyGgHS+toCEdAl0RTNdJJ5HV9lChoBkdAcYReyiVSoGgHS9doCEdAl0S5Du0CzXV9lChoBkdAcV0k/r0J4WgHS9loCEdAl0Td2ovSMXV9lChoBkdAcp1+x4Y772gHS71oCEdAl0Tu7UXpGHV9lChoBkdAcZbgV45cT2gHS8BoCEdAl0T9pM6BAnV9lChoBkdAcOGgdwNsnGgHS8loCEdAl0USV4X403V9lChoBkdAcMFfKZDzAmgHS+ZoCEdAl0YHWWhRInV9lChoBkdActsMa0hNd2gHS8toCEdAl0Y6KDTScHV9lChoBkdAcbHY1He7+WgHS/RoCEdAl0Y6lchTwXV9lChoBkdAcHHM3qAz6GgHS8xoCEdAl0akOiFj/nV9lChoBkdAcPtqtYB/7WgHS+ZoCEdAl0hC6QNkOXV9lChoBkdAb9p+NtIkJWgHS8toCEdAl0rEj5bhWHV9lChoBkdAcbrVLi++NGgHS/5oCEdAl0tK3/givHV9lChoBkdAbqxEXtShrWgHS8xoCEdAl0wpkoWpInV9lChoBkdAcZi45cTrV2gHS/BoCEdAl0zlsxfv4XV9lChoBkdAcdyb5dnkDWgHS+doCEdAl00tyDIzWXV9lChoBkdAbyHv5xiobWgHS+JoCEdAl01l9F4LTnV9lChoBkdAcyrMc6vJR2gHS/hoCEdAl05dUOuq3nV9lChoBkdAcsN/Ho5ggGgHS8doCEdAl06ix/ustHV9lChoBkdAcwagvDgqE2gHS9xoCEdAl08CmMwUQHV9lChoBkdAc+GaOPvKEGgHS+VoCEdAl08wpBomHHV9lChoBkdAcHxwiJO32GgHS89oCEdAl1E3Ah0QsnV9lChoBkdAbiXyNn5BTmgHS81oCEdAl15EdNnGsHV9lChoBkdAc+2GbTc7AGgHS8toCEdAl2ATN6gM+nV9lChoBkdAcWMOinHeamgHS/1oCEdAl2F7SRbKR3V9lChoBkdAc7oiDujRD2gHS89oCEdAl2GEjC53DHV9lChoBkdAcfgABDG96GgHS+loCEdAl2HE/bCaZ3V9lChoBkdAbfifvF3pwGgHS9BoCEdAl2JGOIZZS3V9lChoBkdAcXslrM1TBWgHS+RoCEdAl2KYDYAbQ3V9lChoBkdAcXzSApazNWgHTT0BaAhHQJdjPuKGcnV1fZQoaAZHQHHUp0GNaQpoB0v4aAhHQJdjuxwAEMd1fZQoaAZHQHC8/u5SWJJoB0vuaAhHQJdlTOY6XBx1fZQoaAZHQHDXUrbxmTVoB0vEaAhHQJdmDnzQNTd1fZQoaAZHQHLr9gOSW7hoB03IAmgIR0CXZwxsVLzxdX2UKGgGR0BzGv5nDiwTaAdLvWgIR0CXaVsHjZL7dX2UKGgGR0ByS63NLUTdaAdL7mgIR0CXabGH58BudX2UKGgGR0Bx5opUgjhUaAdLz2gIR0CXadzU7Sy/dX2UKGgGR0Bv42kHlfZ3aAdN5ANoCEdAl2pQZwXIl3V9lChoBkdAcawlt0mtyWgHS81oCEdAl2qGATZg5XV9lChoBkdAcJU+SKWLP2gHS8poCEdAl2q0TYdyUHV9lChoBkdAbiaQeV9nb2gHS/BoCEdAl2sdQKrq+3V9lChoBkdAcr0+xW1c+2gHS79oCEdAl2tYpUgjhXV9lChoBkdAcXtd6cAimmgHS9ZoCEdAl2uxHTZxrHV9lChoBkdAcBGtGNJe3WgHS81oCEdAl204Tj/+9HV9lChoBkdAc161D0Dlo2gHS9ZoCEdAl245bD/EO3V9lChoBkdAcqJllsguAmgHS9FoCEdAl27uR5kbxXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1840, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 512, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.005, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}