--- license: mit base_model: philschmid/bart-large-cnn-samsum tags: - generated_from_trainer model-index: - name: bart-model results: [] --- # bart-model This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co./philschmid/bart-large-cnn-samsum) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6169 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.487 | 0.8 | 10 | 1.2019 | | 1.3092 | 1.61 | 20 | 0.9905 | | 1.0316 | 2.41 | 30 | 0.7841 | | 0.8111 | 3.22 | 40 | 0.6587 | | 0.7191 | 4.02 | 50 | 0.5964 | | 0.5906 | 4.82 | 60 | 0.5613 | | 0.5351 | 5.63 | 70 | 0.5393 | | 0.4696 | 6.43 | 80 | 0.5429 | | 0.4249 | 7.24 | 90 | 0.5287 | | 0.3619 | 8.04 | 100 | 0.5577 | | 0.3303 | 8.84 | 110 | 0.5794 | | 0.2718 | 9.65 | 120 | 0.6169 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3