Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- sentence-classification
|
6 |
+
- banking
|
7 |
+
datasets:
|
8 |
+
- banking
|
9 |
+
---
|
10 |
+
|
11 |
+
# Banking Sentence Classifier
|
12 |
+
|
13 |
+
This is a sentence classification model for identifying relevant banking sentences.
|
14 |
+
|
15 |
+
## Model Details
|
16 |
+
- Base Model: sentence-transformers/all-MiniLM-L6-v2
|
17 |
+
- Task: Binary Classification (Relevant/Irrelevant Banking Sentences)
|
18 |
+
|
19 |
+
## Usage
|
20 |
+
```python
|
21 |
+
from transformers import AutoTokenizer
|
22 |
+
from sentence_transformers import SentenceTransformer
|
23 |
+
import torch
|
24 |
+
import joblib
|
25 |
+
|
26 |
+
# Load models
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
28 |
+
base_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
29 |
+
classifier = ClassificationHead(base_model.get_sentence_embedding_dimension(), num_classes=2)
|
30 |
+
classifier.load_state_dict(joblib.load('classifier_state.pth'))
|
31 |
+
```
|